钢管-节点板T形受弯连接韧性断裂及极限承载力分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of Ductile Fracture and Ultimate Loading Capacity of T-Connections Between Steel Tube and Gusset Plate Under Bending
  • 作者:尹越 ; 徐丽森 ; 郑力
  • 英文作者:Yin Yue;Xu Lisen;Zheng Li;School of Civil Engineering,Tianjin University;Key Laboratory of Coast Civil Structure and Safety of Ministry of Education(Tianjin University);
  • 关键词:钢管-节点板T形受弯连接 ; 韧性断裂 ; 极限承载力 ; 空穴扩张模型 ; 断裂扩展
  • 英文关键词:T-connections between steel tube and gusset plate;;ductile fracture;;ultimate loading capacity;;void growth model;;propagation of ductile fracture
  • 中文刊名:TJDX
  • 英文刊名:Journal of Tianjin University(Science and Technology)
  • 机构:天津大学建筑工程学院;滨海土木工程结构与安全教育部重点实验室(天津大学);
  • 出版日期:2019-07-15
  • 出版单位:天津大学学报(自然科学与工程技术版)
  • 年:2019
  • 期:v.52;No.343
  • 语种:中文;
  • 页:TJDX2019S2018
  • 页数:7
  • CN:S2
  • ISSN:12-1127/N
  • 分类号:131-137
摘要
建立了钢管-节点板T形连接有限元模型,采用基于微观断裂机制的空穴扩张模型(VGM)对钢管-节点板T形受弯连接进行韧性断裂预测,预测的断裂位置及断裂荷载与试验结果基本一致,验证了空穴扩张模型的断裂判据.结合基于VGM的连续损伤模型,编制VUMAT用户子程序,对钢管-节点板T形受弯连接的韧性断裂扩展进行了数值模拟,确定连接的最终失效模式为冲剪作用导致的钢管管壁的撕裂破坏,该失效模式及其对应的极限承载力与试验结果相符.比较了钢管-节点板T形受弯连接发生过大塑性变形和冲剪破坏2种极限状态对应的极限承载力,结果表明所研究的钢管-节点板T形受弯连接的抗弯承载力由其变形极限状态控制.
        In this study,we established a finite element model for the T-connection between a steel tube and gusset plate.We adopted a void growth model(VGM),based on the micromechanical fracture mechanism,for predicting the ductile fracture of the T-connection under bending.We found the predictions of the fracture location and fracture load to be consistent with the test results,thereby validating the fracture criterion of the VGM.Based on the VGM,we then programmed the user-subroutine VUMAT with a continuum damage criterion.With the usersubroutine,we numerically simulated the propagation of a ductile fracture of the T-connection under bending.We found that the ultimate failure of the T-connection was plastic tearing of the tube wall.The obtained failure mode and the corresponding ultimate loading capacity agree well with the test results.We compared the ultimate loading capacities of excessive plastic deformation and punching shear failure,and the results showed that the loading capacity of the studied T-connection under bending was controlled by the limit of excessive plastic deformation.
引文
[1]Voth A P,Packer J A.Branch plate-to-circular hollow structural Section Connections.I:Experimental investigation and finite-element modeling[J].Journal of Structural Engineering,2012,138(8):995-1006.
    [2]郭耀杰,余桂良,刘汉生,等.高压输电塔高强钢钢管-耳板节点承载力研究[J].武汉大学学报:工学版,2009,42(增1):233-238.Guo Yaojie,Yu Guiliang,Liu Hansheng,et al.Research on bearing capacity of“tube and ear-plate joint”for high-voltage transmission tower[J].Engineering Journal of Wuhan University,2009,42(S1):233-238(in Chinese).
    [3]Hassan M M,Ramadan H,Abdel-Mooty M,et al.Experimental and numerical study of one-sided branch plate-to-circular hollow section connections[J].Steel and Composite Structures,2015,19(4):877-895.
    [4]Lee S H,Shin K J,Lee H D,et al.Behavior of plateto-circular hollow section joints of 600 MPa highstrength steel[J].International Journal of Steel Structures,2012,12(4):473-482.
    [5]Zapata L M,Graciano C,Zapata-Medina D G.Ultimate strength of transversal T-branch plate-to-CHS connections under compression[J].Thin-Walled Structures,2017,112:92-97.
    [6]Voth A P,Packer J A.Branch plate-to-circular hollow structural Section Connections.II:X-type parametric numerical study and design[J].Journal of Structural Engineering,2012,138(8):1007-1018.
    [7]AISC(2011).Steel Construction Manu.14th Ed.American Institute of Steel Construction,US.
    [8]中国工程建设标准化协会.钢管结构技术规程(CECS280:2017)[S].北京:中国计划出版社,2017.China Association for Engineering Construction Standardization CECS 280:2017.Technical Specification for Structures with Steel Hollow Sections[S].Beijing:China Planning Press,2017(in Chinese).
    [9]Rice J R,Tracey D M.On the ductile enlargement of voids in triaxial stress fields[J].Journal of the Mechanics and Physics of Solids,1969,17(3):201-217.
    [10]Kanvinde A M,Deierlein G G.The void growth model and the stress modified critical strain model to predict ductile fracture in structural steels[J].Journal of Structural Engineering,2006,132(12):1907-1918.
    [11]Kanvinde A M,Deierlein G G.Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue[J].Journal of Engineering Mechanics,2007,133(6):701-712.
    [12]Liao F F,Wang W,Chen Y Y.Parameter calibrations and application of micromechanical fracture models of structural steels[J].Structural Engineering and Mechanics,2012,42(2):153-174.
    [13]卢璐.基于微观机制的钢材韧性断裂试验与分析[D].南京:东南大学,2015.Lu Lu.Test and Analysis of Steel Ductile Fracture Based on Microcosmic Mechanism[D].Nanjing:Southeast University,2015(in Chinese).
    [14]刘希月.基于微观机理的高强钢结构材料与节点的断裂性能研究[D].北京:清华大学,2015.Liu Xiyue.Investigations on Fracture Behaviours of High Strength Steel Materials and Connections Based on Micromechanical Models[D].Beijing:Tsinghua Univesity,2015(in Chinese).
    [15]Kanvinde A M,Deierlein G G.Finite-element simulation of ductile fracture in reduced section pull-plates using micromechanics-based fracture models[J].Journal of Structural Engineering,2007,133(5):656-664.
    [16]Kanvinde A M,Fell B V,Gomez I R,et al.Predicting fracture in structural fillet welds using traditional and micromechanical fracture models[J].Engineering Structures,2008,30(11):3325-3335.
    [17]Ma X X,Wang W,Chen Y Y,et al.Simulation of ductile fracture in welded tubular connections using a simplified damage plasticity model considering the effect of stress triaxiality and Lode angle[J].Journal of Constructional Steel Research,2015,114:217-236.
    [18]廖芳芳.钢材微观断裂判据研究及在节点韧性断裂预测中的应用[D].上海:同济大学,2015.Liao Fangfang.Study on Micromechanical Fracture Criteria of Structural Steels and Its Applications to Ductile Fracture Prediction of Connections[D].Shanghai:Tongji University,2015.
    [19]Liao F F,Wang W,Chen Y Y.Ductile fracture prediction for welded steel connections under monotonic loading based on micromechanical fracture criteria[J].Engineering Structures,2015,94:16-28.
    [20]Kang L,Ge H B,Fang X.An improved ductile fracture model for structural steels considering effect of high stress triaxiality[J].Construction and Building Materials,2016,115:634-650.
    [21]Yin Y,Liu X F,Han Q H,et al.Simulation of ductile fracture of structural steels with void growth model and a continuum damage criterion based on it[J].Theoretical and Applied Fracture Mechanics,2018,98:134-148.
    [22]ABAQUS.Theory Manual Version 6.14[M].H.K.S.2015.
    [23]中华人民共和国住房和城乡建设部.GB 50661-2011钢结构焊接规范[S].北京:中国建筑工业出版社,2011.Ministry of Housing and Urban-Rural Development of the People’s Republic of China.GB 50011-2011 Code for Welding of Steel Structures[S].Beijing:China Architecture&Building Press,2011(in Chinese).
    [24]Wardenier J,Kurobane Y,Packer J A,et al.Design Guide for Circular Hollow Section(CHS)Joints Under Predominantly Static Loading[M].2nd Ed.CIDECT,Geneva,Switzerland,2008.