自由活塞柴油直线发电机均质充量压燃工况分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Operating Mode of HCCI Combustion of Free-Piston Diesel Engine for Linear Generator
  • 作者:陈光辉 ; 刘春辉 ; 陈宏威
  • 英文作者:Chen Guanghui;Liu Chunhui;Chen Hongwei;Internal Combustion Engine Research Institute,Tianjin University;School of Mechanical Engineering,Beijing Institute of Technology;
  • 关键词:自由活塞柴油直线发电机 ; 均质充量压燃 ; 化学反应动力学 ; 数值模拟
  • 英文关键词:free-piston engine linear generator(FPELG);;homogeneous charge compression ignition(HCCI);;chemical dynamics model;;numerical simulation
  • 中文刊名:TJDX
  • 英文刊名:Journal of Tianjin University(Science and Technology)
  • 机构:天津大学内燃机研究所;北京理工大学机械与车辆学院;
  • 出版日期:2018-11-12
  • 出版单位:天津大学学报(自然科学与工程技术版)
  • 年:2018
  • 期:v.51;No.333
  • 基金:国家重点研发计划项目(2016YFD0700800)~~
  • 语种:中文;
  • 页:TJDX201811003
  • 页数:6
  • CN:11
  • ISSN:12-1127/N
  • 分类号:22-27
摘要
在分析活塞运动规律基础上,针对自由活塞柴油直线发电机HCCI燃烧过程,建立了耦合柴油详细化学反应机理的CFD模型,搭建了对置二冲程自由活塞柴油直线发电机实验样机系统,并通过实验测试结果验证了该CFD模型的有效性.仿真分析了初始温度、初始压力、当量比和压缩比等工况变化对HCCI燃烧的影响.仿真结果表明:自由活塞柴油直线发电机HCCI燃烧具有典型的两阶段特征,先进行低温反应放热阶段,后进行高温反应放热阶段;随初始温度、初始压力、当量比和压缩比的增大,燃烧相位提前,燃烧放热率峰值、缸内最高温度和最大压力随之增大.
        Based on the piston motion law analysis,the CFD model coupled diesel mechanism of combustion for free-piston engine linear generator(FPELG)HCCI combustion processes was established and then verified experimentally with horizontally opposed two-stroke FPELG experimental prototype.The influence of some key parameters such as initial temperature,initial pressure,equivalence ratio and compression ratio on HCCI is discussed.The simulation results showed that heat release rate is typically of two-stage auto-ignition,with low temperature reaction(LTR)first and then high temperature reaction(HTR).With the increases of initial temperature, initial pressure,equivalence ratio and compression ratio,the maximum of heat release,cylinder temperature and cylinder pressure increase.
引文
[1]李庆峰,肖进,黄震.自由活塞内燃发电机仿真研究[J].中国机械工程,2009,20(8):911-916.LiQingfeng,XiaoJin,HuangZhen.Simulationofa freepiston linearalternator[J]. ChinaMechanical Engineering,2009,20(8):911-916(in Chinese).
    [2]Mikalsen R,Roskilly A P. Performance simulation of a sparkignitedfree-pistonenginegenerator[J].Applied Thermal Engineering,2008,28(14/15):1726-1733.
    [3]栾延龙,李理光,王哲,等.自由活塞发动机关键设计参数及其性能的仿真优化研究[J].内燃机工程,2010,31(2):15-26.Luan Yanlong,Li Liguang,WangZhe,et al. Keydesignparameters andperformanceoptimizationofafreepistonenginebasedonsimulation[J].ChineseInternal CombustionEngineEngineering,2010,31(2):15-26(in Chinese).
    [4]Najt P M,Foster D E. Compression ignited homogeneous charge combustion[C]//SAE Paper,1983:830264.
    [5]Hung N B,Lim O T. A study of a two-stroke free piston linearengineusingnumericalanalysis[J].Journalof MechanicalScienceandTechnology,2014,28(4):1545-1557.
    [6]Xiao J,Li Q,Huang Z. Motion characteristic of a free pistonlinearengine[J].AppliedEnergy, 2010,87(4):1288-1294.
    [7]田春来.直线电机式自由活塞发动机运动特性与控制策略研究[D].北京:北京理工大学机械与车辆学院,2012.TianChunlai.ResearchonDynamicsandControlStrategy of Free-Piston Engine for Linear Generator[D]. Beijing:SchoolofMechanicalEngineering,BeijingInstitute of Technology,2012(in Chinese).
    [8]Goldsborough S S,Blarigan P V. A Numerical Study of a Free-PistonICOperationonHomogeneousCharge CompressionIgnitionCombustion[M].Warrendale,USA:Society of Automotive Engineering,1999.
    [9]CaresanaF,ComodiG,PelagalliL.Designapproach foratwo-strokefreepistonengineforelectricpower generation[C]//SAE Paper,2004:2004-32-003.
    [10]许洪瑜,冯慧华,宋豫,等.基于活塞运动规律的自由活塞发动机燃烧放热规律[J].内燃机学报,2015,33(5):413-419.XuHongyu,FengHuihua,SongYu,etal.HeatreleaserateofFPEGbasedonthepistonmotion[J].TransactionsofCSICE, 2015, 33(5):413-419(in Chinese).
    [11]毛金龙,左正兴.压燃式自由活塞直线发电机工作过程数值仿真[J].北京理工大学学报,2011,31(9):1036-1040.Mao Jinlong,Zuo Zhengxing. Working process numericalsimulationofcompressionignitionfree-pistonlinear generator[J].TransactionsofBeijingInstituteofTechnology,2011,31(9):1036-1040(in Chinese).
    [12] Wang Hu,Yao Mingfa,Yue Zongyu,et al. A reduced toluenereferencefuelchemicalkineticmechanismfor combustion and polycyclic-aromatic hydrocarbon predictions[J].CombustionandFlame, 2015, 162(6):2390-2404.