VO@g-C_3N_4-T高效可见光催化苯羟基化制苯酚
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Photocatalytic Synthesis of Phenol by Hydroxylation of Benzene over VO@g-C_3N_4-T under Visible Light
  • 作者:陈福山 ; 杨涛 ; 胡华南
  • 英文作者:CHEN Fu-shan;YANG Tao;HU Hua-nan;Department of Chemistry and Environment Engineering, Jiujiang University;Jiangxi Province Engineering Research Center of Ecological Chemical Industry;
  • 关键词:C—H活化 ; 氮化 ; 光催化 ; 多相催化剂 ; 苯羟基化 ; 催化技术
  • 英文关键词:C-H activation;;carbon nitride;;photocatalysis;;heterogeneous catalyst;;hydroxylation of benzene;;catalysis technology
  • 中文刊名:JXHG
  • 英文刊名:Fine Chemicals
  • 机构:九江学院化学与环境工程学院;江西省生态化工工程技术研究中心;
  • 出版日期:2018-07-12 16:34
  • 出版单位:精细化工
  • 年:2018
  • 期:v.35
  • 基金:国家自然科学基金(21566013)~~
  • 语种:中文;
  • 页:JXHG201809015
  • 页数:7
  • CN:09
  • ISSN:21-1203/TQ
  • 分类号:100-106
摘要
以尿素和乙酰丙酮氧钒为原料,将乙酰丙酮氧钒络合在纳米薄片石墨化氮化上,得到系列不同V质量分数的光催化剂(VO@g-C_3N_4-T),将其与石墨化氮化(g-C_3N_4)、钒氧化合物负载在石墨化氮化上得到的催化剂(VO/g-C_3N_4)进行了催化苯羟基化的性能对比。采用N2吸附-脱附、X射线衍射光谱(XRD)、傅里叶变换红外光谱(FTIR)、扫描电镜(SEM)、能谱(EDS)、电感耦合等离子体-原子发射光谱(ICP-AES)对制备的催化剂进行了表征。考察了所得催化剂可见光下催化苯羟基化制苯酚的性能。结果表明,高比表面积、纳米薄片状的VO@g-C_3N_4-T催化剂具有合适的带差,对可见光下催化苯的C—H活化及羟基化具有较好的催化性能,苯的转化率和苯酚选择性分别可以达到98.4%、91.1%。由于石墨化氮化和钒具有较强的相互作用,减少了钒的溶脱,所以该催化剂具有很好的可重复使用性,连续使用5次后,苯的转化率和苯酚的选择性仍然可以达到97.1%和91.0%。
        Oxovanadium-graphitic carbon nitride thin nanosheet(VO@g-C_3N_4-T) of different V mass fractions was prepared using urea and vanadium(Ⅳ) oxy acetylacetonate as precursors, and was compared with graphite nitride carbon(g-C_3N_4) and oxovanadium-supported graphite nitride carbon(VO/g-C_3N_4) for catalytic performance of benzene hydroxylation. The samples were characterized by X-ray diffraction(XRD), Fourier translation infrared spectroscopy(FTIR), N2 adsorption, scanning electron microscope(SEM), energy dispersive spectroscopy(EDS), inductively coupled plasma-atomic emission spectroscopy(ICP-AES). The photocatalytic performances of the obtained samples were tested in the hydroxylation of benzene to produce phenol under visible light. The results showed that VO@g-C_3N_4-T nanosheets possessed large specific surface area and had favorable bandgap, which resulted in a very good photocatalytic activity for the hydroxylation of benzene via C-H activation under visible light. 98.4% conversion of benzene was obtained, and the selectivity to phenol was as high as 91.1%. The good reusability of catalyst was attributed to strong interaction between graphitic carbon nitride surface and vanadium metal, which could minimize vanadium leaching. After being reused five times, the conversion of benzene and the selectivity of phenol still could be up to 97.1% and 91.1%, respectively.
引文
[1]Ehrich H,Berndt H,Pohl M-M,et al.Oxidation of benzene to phenol on supported Pt-VOx and Pd-VOx catalysts[J].Applied Catalysis A:General,2002,230(1/2):271-280.
    [2]Herron N,Tolman C A.A highly selective zeolite catalyst for hydrocarbon oxidation.A completely inorganic mimic of the alkaneω-hydroxylases[J].Journal of the American Chemical Society,1987,109(9):2837-2839.
    [3]Mimoun H,Saussine L,Daire E,et al.Vanadium(Ⅴ)peroxy complexes.New versatile biomimetic reagents for epoxidation of olefins and hydroxylation of alkanes and aromatic hydrocarbons[J].Journal of the American Chemical Society,1983,105(10):3101-3110.
    [4]Tani M,Sakamoto T,Mita S,et al.Hydroxylation of benzene to phenol under air and carbon monoxide catalyzed by molybdovanadophosphoric acid[J].Angewandte Chemie International Edition,2005,44(17):2586-2588.
    [5]Bal R,Tada M,Sasaki T,et al.Direct phenol synthesis by selective oxidation of benzene with molecular oxygen on an interstitial-N/Re cluster/zeolite catalyst[J].Angewandte Chemie International Edition,2006,45(3):448-452.
    [6]Balducci L,Bianchi D,Bortolo R,et al.Direct oxidation of benzene to phenol with hydrogen peroxide over a modified titanium silicalite[J].Angewandte Chemie,2003,115(40):5087-5090.
    [7]Acharyya S S,Ghosh S,Tiwari R,et al.Synergistic effect between ultrasmall Cu(Ⅱ)oxide and Cu Cr2O4 spinel nanoparticles in selective hydroxylation of benzene to phenol with air as oxidant[J].ACS Catalysis,2015,5(5):2850-2858.
    [8]Wang Y,Wang X,Antonietti M.Polymeric graphitic carbon nitride as a heterogeneous organocatalyst:from photochemistry to multipurpose catalysis to sustainable chemistry[J].Angewandte Chemie International Edition,2012,51(1):68-89.
    [9]Dai Xiaoqiang(戴小强),Zhu Yabo(朱亚波),Xu Xiaoliang(许孝良),et al.Photocatalysis with g-C3N4 applied to organic synthesis[J].Chinese Journal of Organic Chemistry(有机化学),2017,37(3):577-585.
    [10]Chen Xiufang,Zhang Jinshui,Fu Xianzhi,et al.Fe-g-C3N4-Catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light[J].Journal of the American Chemical Society,2009,131(33):11658-11659.
    [11]Verma S,Nasir Baig R B,Nadagouda M N,et al.Photocatalytic C–H activation of hydrocarbons over VO@g-C3N4[J].ACS Sustainable Chemistry&Engineering,2016,4(4):2333-2336.
    [12]Verma S,Baig R B N,Han C,et al.Oxidative esterification via photocatalytic C—H activation[J].Green Chemistry,2016,18(1):251-254.
    [13]Yang S,Gong Y,Zhang J,et al.Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light[J].Advanced Materials,2013,25(17):2452-2456.
    [14]Verma S,Nasir Baig R B,Nadagouda M N,et al.Hydroxylation of benzene via C—H activation using bimetallic Cu Ag@g-C3N4[J].ACS Sustainable Chemistry&Engineering,2017,5(5):3637-3640.
    [15]Sing K S W,Everett D H,et al.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J].Pure and Applied Chemistry,1985,57(4):603-619.
    [16]Yu J,Xiang Q,Ran J,et al.One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated Ti O2 hollow microspheres and tabular anatase single micro-crystals with high-energy facets[J].Cryst Eng Comm,2010,12(3):872-879.
    [17]Yu J,Qi L,Jaroniec M.Hydrogen production by photocatalytic water splitting over Pt/Ti O2 nanosheets with exposed(001)facets[J].The Journal of Physical Chemistry C,2010,114(30):13118-13125.
    [18]Qi L,Yu J,Jaroniec M.Preparation and enhanced visible-light photocatalytic H2-production activity of Cd S-sensitized Pt/Ti O2nanosheets with exposed(001)facets[J].Physical Chemistry Chemical Physics,2011,13(19):8915-8923.
    [19]Li X,Huang R,Hu Y,et al.A templated method to Bi2WO6 hollow microspheres and their conversion to double-shell Bi2O3/Bi2WO6hollow microspheres with improved photocatalytic performance[J].Inorganic Chemistry,2012,51(11):6245-6250.
    [20]Ge L.Synthesis and photocatalytic performance of novel metal-free g-C3N4 photocatalysts[J].Materials Letters,2011,65(17/18):2652-2654.
    [21]Li Y,Zhang J,Wang Q,et al.Nitrogen-rich carbon nitride hollow vessels:synthesis,characterization,and their properties[J].The Journal of Physical Chemistry B,2010,114(29):9429-9434.
    [22]Ding J,Liu Q,Zhang Z,et al.Carbon nitride nanosheets decorated with WO3 nanorods:Ultrasonic-assisted facile synthesis and catalytic application in the green manufacture of dialdehydes[J].Applied Catalysis B-Environmental,2015,165:511-518.
    [23]Bao Y H,Jiang H,Xing W H,et al.Liquid phase hydroxylation of benzene to phenol over vanadyl acetylacetonate supported on amine functionalized SBA-15[J].Reaction Kinetics Mechanisms and Catalysis,2015,116(2):535-547.
    [24]Xu J,Jiang Q,Chen T,et al.Vanadia supported on mesoporous carbon nitride as a highly efficient catalyst for hydroxylation of benzene to phenol[J].Catalysis Science&Technology,2015,5(3):1504-1513.
    [25]Ding G D,Wang W T,Jiang T,et al.Highly selective synthesis of phenol from benzene over a vanadium-doped graphitic carbon nitride catalyst[J].Chem Cat Chem,2013,5(1):192-200.
    [26]Niu P,Zhang L,Liu G,et al.Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J].Advanced Functional Materials,2012,22(22):4763-4770.
    [27]Ding Z,Chen X,Antonietti M,et al.Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation[J].Chem Sus Chem,2011,4(2):274-281.
    [28]Ye X,Cui Y,Wang X.Ferrocene-modified carbon nitride for direct oxidation of benzene to phenol with visible light[J].Chem Sus Chem,2014,7(3):738-742.
    [29]Ye X,Cui Y,Qiu X,et al.Selective oxidation of benzene to phenol by Fe-CN/TS-1 catalysts under visible light irradiation[J].Applied Catalysis B:Environmental,2014,152/153(25):383-389.