2017年广州市大气臭氧激光雷达组网观测分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Networking Observation and Analysis of Atmospheric Ozone Lidars in Guangzhou in 2017
  • 作者:黄祖照 ; 裴成磊 ; 王宇骏 ; 陈彦宁 ; 梁永健 ; 张天舒 ; 范广强 ; 万学平 ; 胡婷婷 ; 李展 ; 李时政
  • 英文作者:HUANG Zuzhao;PEI Chenglei;WANG Yujun;CHEN Yanning;LIANG Yongjian;ZHANG Tianshu;FAN Guangqiang;WAN Xueping;HU Tingting;LI Zhan;LI Shizheng;Guangzhou Environmental Technology Center;Guangzhou Environmental Monitoring Center;Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences;Wuxi CAS Photonics Co.,Ltd;
  • 关键词:差分吸收激光雷达 ; 臭氧浓度 ; 垂直分布 ; 传输过程
  • 英文关键词:differential absorption laser lidar;;ozone concentration;;vertical distribution;;transmission process
  • 中文刊名:FJKS
  • 英文刊名:Environmental Science & Technology
  • 机构:广州市环境技术中心;广州市环境监测中心站;中国科学院安徽光学精密机械研究所;无锡中科光电技术有限公司;
  • 出版日期:2018-11-15
  • 出版单位:环境科学与技术
  • 年:2018
  • 期:v.41
  • 基金:广州市科技计划项目:广州市大气臭氧污染关键前提物溯源与防控措施研究(201704020135)
  • 语种:中文;
  • 页:FJKS201811026
  • 页数:6
  • CN:11
  • ISSN:42-1245/X
  • 分类号:165-170
摘要
差分吸收臭氧雷达是测量对流层O_3时空分布的有力工具,利用臭氧激光雷达在广州地区开展大气O_3的组网加强观测研究,分析大气O_3浓度的时空分布特征。广州塔站点臭氧激光雷达与安光所标准机对比分析表明两者一致性非常高;同时广州塔498 m处O_3质量浓度与臭氧雷达在495 m处反演的O_3浓度较一致。该文研究2次典型污染过程中对流层O_3浓度时空分布特征及高空O_3污染气团沉降对地面O_3浓度的影响。结果表明:(1)臭氧垂直分布浓度均表现为O_3午后单峰特征明显,主要分布在2.0 km范围内;(2)广州地区O_3浓度表现为南部区域高、北部区域低的特征;(3)9月16-21日期间广州市从北至南5站点雷达图均监测到18日凌晨高空1.0~2.0 km处存在O_3输入且沉降过程,18日午后万顷沙站点O_3浓度最高;(4)10月24-26日期间5站点O_3浓度表明臭氧午后单峰特征明显,广州塔、番禺市桥、万顷沙站点午后O_3浓度均较高,夜间时段高空均存在明显的O_3残留现象,夜间残留会导致次日O_3浓度持续累积升高。
        The differential absorption lidar is an effective tool for measuring ozone distributions. The spatiotemporal distribution characteristics of atmospheric O_3 concentration were analyzed by using the ozone lidar to strengthen the observation research in Guangzhou. The comparison and analysis between the ozone laser lidar of Guangzhou Tower and the standard lidar of Anhui Institute of Optics and Fine Mechanics showed that the consistency was high. The concentration of O_3 at 498 m in Guangzhou Tower was highly consistent with the concentration of O_3 at 495 m of ozone lidar. This paper studies two typical pollution processes in Guangzhou, with the spatial and temporal distribution characteristics of tropospheric O_3 concentration and the sedimentation process of O_3 air mass effected on ground O_3 concentration. The results indicated that the vertical distribution concentration of ozone was characterized by the single peak characteristic in the afternoon, which was mainly distributed within the range of 2.0 km. The spatial distribution of O_3 concentration in Guangzhou was characterized by high in the southern region and low in the northern region. During September 16 th and 21 th, the ozone lidar results of 5 sites were monitored the process of ozone transmission and settlement, and the ozone concentration of Panyu Wanqingsha site was the highest in the afternoon of the 18 th. The results of 5 sites showed that the concentration of ozone was the single peak characteristic in the afternoon. And the ozone concentrations of Guangzhou Tower, Panyu Shiqiao, Panyu Wanqingsha sites were higher in the afternoon. There was a clear phenomenon of residual ozone at nighttime and ozone residues could cause the ozone concentration on the following day to increase during the study period.
引文
[1]胡顺星,胡欢陵,吴永华,等.差分吸收激光雷达测量对流层上部和平流层下部臭氧[C].第九届全国大气环境与污染学术会议论文集, 2001(10):160-166.
    [2]胡顺星,孟祥谦,曹开法,等.合肥上空大气臭氧垂直分布特征及影响因素[J].大气与环境光学学报, 2011,6(2):141-145.Hu Shunxing, Meng Xiangqian, Cao Kaifa, et al. Analysis of vertical distribution of atmospheric ozone over Hefei[J].Journal of Atmospheric and Environmental Optics, 2011, 6(2):141-145.
    [3]范广强,张天舒,付毅宾,等.差分吸收激光雷达监测北京灰霾天臭氧时空分布特征[J].中国激光, 2014,41(10):241-248.Fan Guangqiang, Zhang Tianshu, Fu Yibin, et al. Temporal and spatial distribution characteristics of ozone based on differential absorption lidar in Beijing[J]. Chinese Journal of Lasers, 2014,41(10):241-248.
    [4]陶宗明,陈宇,褚德林,等. AML-2车载激光雷达测量臭氧的大气后向散射系数项修正方法研究[J].大气与环境光学学报, 2008,3(6):401-406.Tao Zongming, Chen Yu, Chu Delin, et al. Atmospheric backscattering correction for ozone measurement with AML-2 mobile lidar[J]. Journal of Atmospheric and Environmental Optics, 2008,3(6):401-406.
    [5]曹开法,黄见,胡顺星.边界层臭氧差分吸收激光雷达[J].红外与激光工程, 2015,44(10):2912-2917.
    [6] Wang Lihua, Melanie B Follette Cook, Newchurch M J, et al.Evaluation of lightning-induced tropospheric ozone enhancements observed by ozone lidar and simulated by WRF/Chem[J]. Atmospheric Environment, 2015(115):185-191.
    [7]范广强,刘建国,刘文清,等.基于差分吸收激光雷达的一种新的对流层臭氧浓度反演算法[J].光谱学与光谱分析,2012,32(12):3304-3308.Fan Guangqiang, Liu Jianguo, Liu Wenqing, et al. A new retrieval method for ozone concentration at the troposphere based on differential absorption lidar[J]. Spectroscopy and Spectral Analysis, 2012,32(12):3304-3308.
    [8]黄祖照,董云升,刘建国,等.珠三角地区一次灰霾天气过程激光雷达观测与分析[J]. 2013,8(2):114-123.Huang Zuzhao, Dong Yunsheng, Liu Jianguo, et al. Observation and analysis of a haze process in Pearl River Delta Region using lidar[J]. Journal of Atmospheric and Environmental Optics, 2013,8(2):114-123.
    [9]王宇骏,黄新雨,裴成磊,等.广州市近地面臭氧时空变化及其生成对前提物的敏感性初步分析[J].安全与环境工程,2016,23(3):83-88.Wang Yujun, Huang Xinyu, Pei Chenglei, et al. Spatialtemporal variations of ground-level ozone formation to precursors in Guangzhou City[J]. Safety and Environmental Engineering, 2016,23(3):83-88.
    [10]王雪梅,韩志伟,雷孝恩.广州地区臭氧浓度变化规律研究[J].中山大学学报:自然科学版, 2003,42(4):106-109.Wang Xuemei, Han Zhiwei, Lei Xiao’en. Study on ozone concentration change of Guangzhou area[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2003, 42(4):106-109.