蓝宝石衬底上外延生长ZnGa_2O_4纳米线及其表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Epitaxial Growth and Characterization of ZnGa_2O_4 Nanowires on Sapphire Substrate
  • 作者:李康 ; 李鹏坤 ; 熊庭辉 ; 孙姝婧 ; 陈晨龙
  • 英文作者:LI Kang;LI Peng-kun;XIONG Ting-hui;SUN Shu-jing;CHEN Chen-long;Key Laboratory of Optoelectronic Materials Chemistry and Physics,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Science;University of Chinese Academy of Sciences;
  • 关键词:ZnGa2O4纳米线 ; 化学气相沉积法 ; 光致发光 ; 蓝宝石衬底
  • 英文关键词:ZnGa2O4 nanowire;;chemical vapor deposition method;;photoluminescence;;sapphire substrate
  • 中文刊名:RGJT
  • 英文刊名:Journal of Synthetic Crystals
  • 机构:中国科学院福建物质结构研究所中科院光电材料化学与物理重点实验室;中国科学院大学;
  • 出版日期:2019-06-15
  • 出版单位:人工晶体学报
  • 年:2019
  • 期:v.48;No.248
  • 基金:福建省“百人计划”(第四批)项目;; 国家自然科学基金(61774158);; 福建省自然科学基金(2018J01110)
  • 语种:中文;
  • 页:RGJT201906004
  • 页数:5
  • CN:06
  • ISSN:11-2637/O7
  • 分类号:23-27
摘要
使用一种简单的化学气相沉积法成功地在c面蓝宝石衬底上外延生长了整齐排列的ZnGa_2O_4单晶纳米线。研究了在不同生长温度和生长压力下外延生长ZnGa_2O_4纳米线,并使用XRD,SEM和TEM对产物进行了表征。结果表明,在生长条件为980℃和100 Torr时,可以外延生长出整齐排列的ZnGa_2O_4纳米线。所制备的ZnGa_2O_4纳米线直径为60~150 nm,并遵循Au催化的VLS生长机制沿其四个结晶学方向在蓝宝石上外延生长。分析了纳米线沿四个方向生长的原因,并对纳米线的光致发光性能进行了探讨。
        Well-aligned single-crystalline ZnGa_2O_4 nanowires were successfully epitaxially grown on c-plane sapphire substrate by a convenient chemical vapor deposition( CVD) method. Different growth temperatures and growth pressures to epitaxially grow ZnGa_2O_4 were investigated and the as-prepared samples were characterized by XRD,SEM,and TEM. It was found that well-aligned ZnGa_2O_4 nanowires can be epitaxially grown on c-plane sapphire substrate at 980 ℃ and 100 Torr. The asprepared ZnGa_2O_4 nanowires have a diameter of 60-150 nm,and epitaxially grow in four crystallographic directions following the Au-catalyzed VLS growth mechanism on the sapphire. The mechanism for the growth of nanowires in four directions was disscussed,and the photoluminescence properties of ZnGa_2O_4 nanowires were characterized.
引文
[1] Lu M Y,Zhou X,Chiu C Y,et al. From Ga N to ZnGa2O4Through a Low-temperature Process:Nanotube and Heterostructure Arrays[J]. ACS Appl. Mater. Inter.,2014,6:882-887.
    [2] Akazawa H,Shinojima H. Efficient Optical Activation of Eu3+Ions Doped in Zn Ga2O4Thin Films:Correlation Between Crystalline Phase and Photoluminescence[J]. J. Phys. Chem. Solids 2018,117:60-69.
    [3] Xu L,Su Y,Zhou Q T,et al. Self-assembled Catalyst Growth and Optical Properties of Single-crystalline Zn Ga2O4Nanowires[J]. Cryst. Growth Des. 2007,7:810-814.
    [4] Minami T,Maeno T,Kuroi Y,et al. High-luminance Green-emitting Thin-film Electroluminescent Devices Using ZnGa2O4:Mn Phosphor[J].Jpn. J. Appl. Phys. 1995,34:L684-L687.
    [5] Safeera T A,Khanal R,Medvedeva J E,et al. Low Temperature Synthesis and Characterization of Zinc Gallate Quantum Dots for Optoelectronic Applications[J]. J. Alloys Compd. 2018,740,567-573.
    [6] Chen I C,Lin S S,Lin T J,et al. The Assessment for Sensitivity of a NO2Gas Sensor with ZnGa2O4/Zn O Core-shell Nanowires--a Novel Approach[J]. Sensors 2010,10:3057-72.
    [7] Lou Z,Li L D,Shen G Z. High-performance Rigid and Flexible Ultraviolet Photodetectors with Single-crystalline ZnGa2O4Nanowires[J]. Nano Res. 2015,8:2162-2169.
    [8] Hrong R H,Zeng Y Y,Wang W K,et al. Transparent Electrode Design for Al Ga N Deep-ultraviolet Light-emitting Diodes[J]. Opt. Express2017,25:32206-32213.
    [9] Tien L C,Tseng C C,Chen Y L,et al. Direct Vapor Transport Synthesis of ZnGa2O4Nanowires with Superior Photocatalytic Activity[J]. J.Alloys Compd. 2013,555:325-329.
    [10] Lei M,Hu Q R,Wang X,et al. Facile Route to Straight ZnGa2O4Nanowires and Their Cathodoluminescence Properties[J]. J. Alloys Compd.2010,489:663-666.
    [11] Yuan Y P,Du W M,Qian X F. ZnxGa2O3+x(0x1)Solid Solution Nanocrystals:Tunable Composition and Optical Properties[J]. J.Mater. Chem. 2012,22:653-659.
    [12] Wang L L,Hou Z Y,Quan Z W,et al. Preparation and Luminescence Properties of Mn2+-doped ZnGa2O4Nanofibers via Electrospinning Process[J]. Mater. Res. Bull. 2009,44:1978-1983.
    [13] Du Y X,Li G C. Synthesis of Ga-riched Zinc Gallate Nanowires by Reactive Evaporation and the Cathodoluminescence Properties of Individual Nanowires[J]. Mater. Res. Bull. 2010,45:1092-1095.
    [14] Horng R H,Huang C Y,Ou S L,et al. Epitaxial Growth of ZnGa2O4:a New,Deep Ultraviolet Semiconductor Candidate[J]. Cryst. Growth Des. 2017,17:6071-6078.
    [15] Zhang X T,Rao Y Y,Liang Y,et al. Synthesis of Octahedral Zn Ga2O4Particles and Their Field-emission Properties[J]. J. Phys. D:Appl.Phys. 2008,41:095104.
    [16] Li D R,Wang Y H,Xu K,et al. Persistent Luminescent and Photocatalytic Properties of ZnxGa2O3+x(0. 8x1)Phosphors[J]. Rsc Adv.2015,5(27):20972-20975.
    [17] Bae S Y,Seo H W,Na C W,et al. Synthesis of Blue-light-emitting ZnGa2O4Nanowires Using Chemical Vapor Deposition[J]. Chem. Commun.2004,16(16):1834-1835.
    [18] Zou L,Xiang X,Wei M,et al. Single-crystalline ZnGa2O4Spinet Phosphor via a Single-source Inorganic Precursor Route[J]. Inorg. Chem.2008,47(4):1361-1369.