不同热处理豆渣中蛋白质分子结构与其营养价值及瘤胃降解特性的相关性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Correlation of Protein Molecular Structure,Its Nutritional Value and Ruminal Degradation Characteristics in Different Heat Treated Okara
  • 作者:李昕 ; 徐宏建 ; 王楠 ; 么恩悦 ; 李洋 ; 张永根
  • 英文作者:LI Xin;XU Hongjian;WANG Nan;YAO Enyue;LI Yang;ZHANG Yonggen;College of Animal Science and Technology of Northeast Agricultural University;
  • 关键词:热处理 ; 豆渣 ; FTIR ; 蛋白质分子结构 ; 营养价值 ; 相关关系
  • 英文关键词:heat treatment;;okara;;FTIR;;protein molecular structure;;nutritional values;;correlation
  • 中文刊名:DWYX
  • 英文刊名:Chinese Journal of Animal Nutrition
  • 机构:东北农业大学动物科学技术学院;
  • 出版日期:2018-11-05 14:47
  • 出版单位:动物营养学报
  • 年:2019
  • 期:v.31
  • 基金:国家奶牛产业技术体系(CARS-36)
  • 语种:中文;
  • 页:DWYX201901048
  • 页数:14
  • CN:01
  • ISSN:11-5461/S
  • 分类号:406-419
摘要
本试验旨在探求不同热处理对豆渣蛋白质分子结构的影响及其与营养价值、瘤胃降解特性及瘤胃非降解蛋白质的小肠消化率的相关关系。将采集到的新鲜豆渣进行不同温度(100、115、130℃)和不同时间(2、4、6 h)的热处理,共计9种不同程度热处理样品。采用常规化学分析方法并结合康奈尔净碳水化合物-净蛋白质体系(CNCPS)、尼龙袋技术及改进的三步体外法对不同热处理的豆渣进行营养价值评定,并利用傅里叶变换红外光谱(FTIR)技术分析豆渣蛋白质分子结构的变化,进而探求它们之间的相关关系。结果表明:1)随着温度的升高以及加热时间的延长,豆渣中可溶性蛋白和非蛋白氮含量显著减少(P<0.05),中性洗涤不溶蛋白含量显著增加(P<0.05),同时使干物质瘤胃有效降解率及小肠可消化蛋白含量显著降低(P<0.05)。2)不同热处理对豆渣蛋白质分子结构中酰胺Ⅰ带峰高、峰面积,酰胺Ⅱ带峰高、峰面积,α-螺旋、β-折叠的峰高以及α-螺旋和β-折叠的峰高比值均有显著影响(P<0.05)。3)酰胺Ⅰ带峰高、峰面积,酰胺Ⅱ带峰高、峰面积,α-螺旋、β-折叠的峰高以及α-螺旋和β-折叠的峰高比值可以有效地估测不同热处理豆渣的蛋白质营养价值、瘤胃降解参数及小肠消化率,并建立回归方程。其中,不同热处理豆渣蛋白质分子结构对缓慢降解蛋白质含量(R2=0.67)、干物质有效降解率(R2=0.66)、粗蛋白质快速降解部分含量(R2=0.63)、小肠消化率(R2=0.63)拟合最好。综上所述,不同热处理对豆渣蛋白质分子结构、营养价值和瘤胃降解特性及小肠消化率均有影响,100℃、2 h处理的豆渣的营养价值最高。不同热处理豆渣中蛋白质分子结构与其营养价值、瘤胃降解特性及小肠消化率之间存在相关关系,初步证明利用FTIR技术得到的豆渣光谱信息能直接反映其热损害程度。
        The objective of this experiment was to explore the effects of different heat treatments on protein molecular structure of okara and their relationships with nutritional value,ruminal degradability characteristics and small intestine digestibility of rumen undegraded protein.Fresh okara were treated at different temperatures(100,115 and 130 ℃) and different time(2,4 and 6 h),and got 9 kinds of different heat treated samples.This experiment used conventional chemical analysis methods combined with Cornell net carbohydrates-net protein system(CNCPS),nylon bag technology and a modified three-step in vitro method to evaluate the nutritive values of different heat treated okara.Fourier transform infrared spectroscopy(FTIR) technology was used to analyze the changes of protein molecular structure and then to explore the correlation between them.The results showed as follows:1) with increasing temperature and time,the contents of soluble protein and non-protein nitrogen in the okara significantly reduced(P<0.05),the content of neutral detergent insoluble protein significantly increased(P<0.05),and the rumen effective degradability of dry matter and intestinal digestibility protein content significantly reduced(P<0.05).2) Amide Ⅰ band peak height and peak area,amide Ⅱ band peak height and peak area,peak height of α-helix and β-sheet,and peak height ratio of α-helix to β-sheet in protein molecular structures of okara had significant effects(P< 0.05).3) Amide Ⅰ band peak height and peak area,amide Ⅱ band peak height and peak area,peak height of α-helix and β-sheet,and peak height ratio of α-helix to β-sheet could effectively estimate protein nutritional value,rumen degradation parameters and intestinal digestibility of different heat treated okara,and regression equations were established.Among these,the protein molecular structure of different heat treated okara could estimate slow degradation protein(R2=0.67),dry matter effective degradation rate(R2=0.66),crude protein rapid degradation part(R2=0.63),small intestinal digestibility(R2=0.63).In summary,different heat treated have an effect on protein molecular structure,nutritional value,rumen degradation characteristics and intestinal digestibility of okara,the nutritional value of okara treated with 100 ℃,2 h is the highest.The protein molecular structure in different heat treated okara is related to its nutritional value,rumen degradation characteristics and intestinal digestibility.There is a correlation and it is demonstrated initially that the spectral information of okara obtained by FTIR technology can directly reflect the degree of thermal damage.
引文
[1]陈晓柯,常虹,郭卫芸,等.豆渣的综合利用现状及其研究进展[J].河南农业科学,2015,44(12):1-5.
    [2]张永根,薛世崇,李洋,等.固态发酵豆渣生产反刍动物饲料工艺条件研究[J].东北农业大学学报,2016,47(5):76-82.
    [3]张文佳.产朊假丝酵母和白地霉混合固态发酵豆渣生产反刍动物饲料的研究[D].硕士学位论文.哈尔滨:东北农业大学,2015.
    [4]GONZLEZ-VEGA J C,KIMB G,HTOO J K,等.热处理豆粕饲喂生长猪的氨基酸消化率[J].中国饲料,2015(24):32-37.
    [5]赵秀琴.中红外光谱分析技术及研究进展[J].安庆师范学院学报(自然科学版),2012,18(4):94-97.
    [6]KHAN N A,PENG Q,XIN H,et al.Vibrational spectroscopic investigation of heat-induced changes in functional groups related to protein structural conformation in camelina seeds and their relationship to digestion in dairy cow s[J].Animal Production Science,2014,55(2):201-206.
    [7]LI X X,ZHANG Y G,YU P Q.Association of bio-energy processing-induced protein molecular structure changes with CNCPS-based protein degradation and digestion of co-products in dairy cow s[J].Journal of Agricultural and Food Chemistry,2016,64(20):4086-4094.
    [8]XIN H S,DING X,ZHANG L Y,et al.Investigation of the spectroscopic information on functional groups related to carbohydrates in different morphological fractions of corn stover and their relationship to nutrient supply and biodegradation characteristics[J].Journal of Agricultural and Food Chemistry,2017,65(20):4035-4043.
    [9]CARBONARO M,NUCARA A.Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region[J].Amino Acids,2010,38(3):679-690.
    [10]李欣新.双低菜粕和豆粕分子结构与营养特性和奶牛生产性能的关系[D].博士学位论文.哈尔滨:东北农业大学,2016.
    [11]NRC.Nutrient requirements of dairy cattle[M].7th ed.Washington,D.C.:National Academy Press,2001.
    [12](美)国家科学研究委员会组织.奶牛营养需要[M].孟庆翔译.北京:中国农业大学出版社,2002.
    [13]KRISHNAMOORTHY U,SNIFFEN C J,STERN MD,et al.Evaluation of a mathematical model of rumen digestion and an in vitro simulation of rumen proteolysis to estimate the rumen-undegraded nitrogen content of feedstuffs[J].British Journal of Nutrition,1983,50(3):555-568.
    [14]LICITRA G,HERNANDEZ T M,VAN SOEST P J.Standardization of procedures for nitrogen fractionation of ruminant feeds[J].Animal Feed and Technology,1996,57(4):347-358.
    [15]SNIFFEN C J,O'CONNOR J D,VAN SOEST P J,et al.A net carbohydrate and protein system for evaluating cattle diets:Ⅱ.Carbohydrate and protein availability[J].Journal of Animal Science,1992,70(11):3562-3577.
    [16]PENG Q H,KHAN N A,WANG Z S,et al.Moist and dry heating-induced changes in protein molecular structure,protein subfractions,and nutrient profiles in camelina seeds[J].Journal of Dairy Science,2014,97(1):446-457.
    [17]GARGALLO S,CALSAMIGLIA S,FERRET A.Technical note:a modified three-step in vitro procedure to determine intestinal digestion of proteins[J].Journal of Animal Science,2006,84(8):2163-2167.
    [18]ORSKOV E R,MCDONALD I.The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage[J].Journal of Agricultural Science,1979,92(2):499-503.
    [19]高红,郝小燕,张广宁,等.应用体外产气法和尼龙袋法评价几种粮食加工副产物的营养价值[J].中国饲料,2017(7):14-19.
    [20]赵连生,牛俊丽,徐元君,等.6种饲料原料瘤胃降解特性和瘤胃非降解蛋白质的小肠消化率[J].动物营养学报,2017,29(6):2038-2046.
    [21]JAEGER H,JANOSITZ A,KNORR D.The Maillard reaction and its control during food processing.The potential of emerging technologies[J].Pathologie Biologie,2010,58(3):207-213.
    [22]MCKINNON J J,OLUBOBOKUN J A,MUSTAFA A,et al.Influence of dry heat treatment of canola meal on site and extent of nutrient disappearance in ruminants[J].Animal Feed Science and Technology,1995,56(3/4):243-252.
    [23]MCKINNON J J,OLUBOBOKUN J A,CHRISTENSEN D A,et al.The influence of heat and chemical treatment on ruminal disappearance of canola meal[J].Canadian Journal of Animal Science,1991,71(3):773-780.
    [24]ARIELI A,BEN-MOSHE A,ZAMWEL S,et al.In situ evaluation of the ruminal and intestinal digestibility of heat-treated whole cottonseeds[J].Journal of Dairy Science,1989,72(5):1228-1233.
    [25]王潍波,赵国琦.温度对糖处理大豆粕干物质消失率的影响[J].广东饲料,2008,17(8):23-25.
    [26]YU P.Application of Advanced synchrotron radiationbased fourier transform infrared(SR-FTIR)microspectroscopy to animal nutrition and feed science:a novel approach[J].British Journal of Nutrition,2004,92(6):869-885.
    [27]YU P Q,MCKINNON J J,CHRISTENSENC R,et al.Using synchrotron-based FTIR microspectroscopy to reveal chemical features of feather protein secondary structure:comparison with other feed protein sources[J].Journal of Agricultural and Food Chemistry,2004,52(24):7353-7361.
    [28]SAMADI,THEODORIDOU K,YU P Q.Detect the sensitivity and response of protein molecular structure of whole canola seed(yellowand brow n)to different heat processing methods and relation to protein utilization and availability using ATR-FT/IR molecular spectroscopy with chemometrics[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2013,105:304-313.
    [29]XIN H S,YU P Q.Detect changes in protein structure of carinata meal during rumen fermentation in relation to basic chemical profile and comparison with canola meal using ATR-FT/IR molecular spectroscopy with chemometrics[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2013,112:318-325.
    [30]王晓帆,张幸怡,郝小燕,等.玉米青贮瘤胃降解特性与蛋白质分子结构的关系[J].动物营养学报,2016,28(6):1924-1934.