不同形状纳米氧化铝对大鼠脑星形胶质细胞的细胞毒性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cytotoxicity of nanometer alumina with different shapes to astrocytes of cerebral cortex of rats
  • 作者:董力 ; 顾雯 ; 阳晓燕 ; 戴洪兴 ; 赵星天 ; 吴妤 ; 周建军 ; 张宏伟 ; 白雪涛
  • 英文作者:DONG Li;GU Wen;YANG Xiao-yan;DAI Hong-xing;ZHAO Xing-tian;WU Yu;ZHOU Jian-jun;ZHANG Hong-wei;BAI Xue-tao;Institute for Environmental Health and Related Product Safety,Chinese Center for Disease Control and Prevention;
  • 关键词:片状纳米氧化铝 ; 棒状纳米氧化铝 ; 星形胶质细胞 ; 细胞凋亡 ; 氧化应激 ; 纳米颗粒形状
  • 英文关键词:Sheet nano-alumina;;Rod-like nano-alumina;;Astrocytes;;Cell apoptosis;;Oxidative stress
  • 中文刊名:HJYJ
  • 英文刊名:Journal of Environment and Health
  • 机构:中国疾病预防控制中心环境与健康相关产品安全所毒理室;北京工业大学环境和能源工程学院化学与化学工程系催化化学和纳米科学实验室;中博瑞康(北京)生物技术有限公司;
  • 出版日期:2016-02-20
  • 出版单位:环境与健康杂志
  • 年:2016
  • 期:v.33;No.248
  • 基金:国家自然科学基金(81372949)
  • 语种:中文;
  • 页:HJYJ201602001
  • 页数:5
  • CN:02
  • ISSN:12-1095/R
  • 分类号:5-9
摘要
目的探讨不同形状的纳米氧化铝的神经损伤作用。方法从24 h内新生的Wistar乳鼠大脑皮质中提取星形胶质细胞,选用20~30 nm片状纳米氧化铝(0、31.25、62.5、125、250、500μg/ml)和棒状纳米氧化铝(0、7.8、15.625、31.25、62.5、125μg/ml),分别作用24、48、72 h,采用MTT法检测细胞活力,并用流式细胞术分析纳米氧化铝所致的细胞凋亡及氧化应激损伤。结果棒状纳米氧化铝和片状纳米氧化铝均可引起明显细胞毒性作用。无论片状还是棒状纳米氧化铝作用24 h细胞凋亡率均无明显的统计学变化。作用48、72 h,随着剂量的增加,细胞凋亡率和活性氧水平逐渐增加,呈现明显剂量依赖性。结论棒状纳米氧化铝和片状纳米氧化铝均可引起星形胶质细胞的细胞凋亡和氧化应激损伤,棒状纳米氧化铝的作用明显强于片状纳米氧化铝。
        Objective To explore the nerve damage by nanometer alumina with different shapes. Methods The astrocytes of cerebral cortex were collected from new natal Wistar rats of 24 hours. We selected 20-30 nm in size, sheet nano-alumina(0,31.25,62.5,125,250,500 μg/ml) and rod-like nano-alumina(0,7.8,15.625,31.25,62.5,125 μg/ml). Cell vitality was determined by MTT method after 24, 48, 72 hours of treatment respectively.Cell apoptosis and oxidative stress injury were detected by a flow cytometry analysis. Results Rod-like nano-alumina and sheet nano-alumina could cause significant cytotoxicity. After 24 hours exposure to nanoparticles, no significant change was seen in the apoptosis rate induced by sheet or rod-like nano-alumina. Apoptosis rate and ROS values were significantly increased after 48 and 72 hours exposure to nanoparticles with obvious dose-dependent manner. Conclusion Rod-like nano-alumina and sheet nano-alumina can cause apoptosis and oxidative stress damage of astrocytes.The role of rod-like nano-particles is stronger than the sheet nanoparticles.
引文
[1]Warner JH,Ito Y,Zaka M,et al.Rotating fullerene chains in carbon nsnopeapods[J].Nano Lett,2008,8:2328-2335.
    [2]吉俊伟,张勤丽,高福平,等.纳米氧化铝致小鼠脏器毒性的基本病理变化[J].毒理学杂志,2011,25(6):442-447.
    [3]蔡文琴,李海标.发育神经生物学[M].北京:科学出版社,1999:109-314.
    [4]葛翠翠,李伟庆,张勤丽,等.不同粒径纳米氧化铝对体外培养神经细胞凋亡的影响[J].环境与职业医学,2012,12(29):72-76.
    [5]刘焕亮.典型纳米材料致大鼠中枢神经系统和多巴胺能神经元的毒性效应研究[D].北京:中国人民解放军军事医学科学院,2014.
    [6]葛翠翠,李伟庆,贾志建,等.不同粒径纳米氧化铝对体外培养神经细胞凋亡的影响[C].第十届全国环境与职业医学研究生学术研讨会论文集.2012:110-114.
    [7]Chen XY,Zhang ZJ,Li XL,et al.Controlled hydrothermal synthesis of colloidal boehmite(γ-Al OOH)nanorods and nanoflakes and their conversion intoγ-Al2O3nanocrystals[J].Solid State Commun,2008,145:368-373.
    [8]Mc Carthy KD,de Vellis J.Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue[J]Cell Biol,1980,85:890-892.
    [9]Jia HL,Wang C,Li Y,et al.Combined effects of 50 Hz magnetic field and magnetic nanoparticles on the proliferation and apoptosis of PC12 cells[J].Biomed Environ Sci,2014,27:97-105.
    [10]Hussain SM,Hess ICL,Gearhart JM,et al.In vitro toxicity of nanoparticles in BRL 3A rat liver cells[J].Toxicol In Vitro,2005,19:975-983.
    [11]Braydich-Stolle L,Hussain S,Schlager JJ,et al.In vitro cytotoxicity of nanoparticles in mammalian gennline stein cells[J].Toxicol Sci,2005,88:412-429.
    [12]Sung JH,Ji JH,Yoon JU,et al.Lung function changes in SpragueDawley rats after prolonged inhalation exposure to silver nanoparticles[J].Inhal Toxicol,2008,20:567-574.
    [13]V'lzuete ML,venero JL.An in vitro assessment ofthe antibacterial properties and cytotoxicity ofnanoparticulate silver bone cement[J].Biomaterial,2004,25:4383-4391.
    [14]Maqusood A,Michael K,Michael G,et al.DNA damage response to different surface chemistry of silver nanoparticles in mammalian cell[J].Toxicol Appl Pharmacol,2008,233:404-410.
    [15]Arora S,Jain J,Rajwade JM,et al.Cellular responses induced by silver nanoparticles in vitro studies[J].Toxicol Lett,2008,179:93-100.
    [16]Takenaka S,Karge,Roth C,et al.Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats[J].Environ Health Perspect,2001,109:547-551.
    [17]Murray A,Kisin E,Leonard S.Oxidative stress and inflammatory response in derma ltoxicity of single-walled carbonnanotubes[J].Toxicology,2009,257:161.
    [18]Zhang J,Lin X,Blume K et al.Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-Butane[J].Ann Rev Phys Chem,2008,59:713—740
    [19]Lindberg HK,Falck GCM,Suhonen S,et al.Genotoxicity of nanomatefials:DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro[J].Toxicol Lett,2009,186:166-173
    [20]Monteiller C,Tran L,Mac Nee W,et al.The pro-inflammatory effects of low-toxicity low-solubility particles,nanoparticles and fine particles,on epithelial cells in vitro:the role of surface area[J].Occup Environ Med,2007,64:609-61 5.
    [21]Elder A,Oberdorster G.Translocation and effects of ultrafine particles outside of the lung[J].Clin Occup Environ Med,2006,5:785-796.
    [22]Shimada A,Kawamura N,Okajima M,et al.Translocation pathway of the intratracheally instilled ultrafme particles from the lung into the blood circulation in the mouse[J].Toxieol Pathol,2006,34:949-957.
    [23]Kwon JT,Hwang SK,Jin H,et al.Body distribution of inhaled fluorescent magnetic nanoparticles in the mice[J].J Occup Health,2008,50:1-6.
    [24]Muldoon LL,Sander M,Pinkston KE,et al.Imaging,distribution,and toxicity of super paramagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tunlor[J].Neurosurgery,2005,57:785-796.
    [25]Lockman PR,Koziara J,Roder KE,et al.In vivo and in vitro assessment of baseline blood-brain barrier parameters in the presence of novel nanoparticles[J].Pharm Res,2003,20:705-713.
    [26]Loekman PR,Mumper RJ,Khan MA,et al.Nanopartiele technology for drug delivery across the blood-brain barrier[J].Drug Dev Ind Pharm,2002,28:1-13.
    [27]Sharma G,Vijayaraghavan S.Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium release from intracellular stores[J].Proc Natl Acad Sci USA,2001,98:4148-4153.
    [28]Pavelko KD,Howe CL,Drescher KM,et al.Interleukin-6 protect anterior horm neurons from lethal virus-induced injury[J].J Neurosci,2003 23:481-492.
    [29]Gabriel C,Ali C,Lesne S,et al.Transforming growth factor alphainduced expression of type 1 plasminogen activator inhibitor in astrocytes rescues neurons from excitotoxicity[J].FASEB J,2003,17:277-279.
    [30]Min KJ,Yang MS,Jou I,et al.Protein kinase A mediates microglial activation induced by plasminogen and gangliosides[J].Exp Mol Med,2004,36:461-467.
    [31]Song H,Stevens CF,Gage FH.Astroglia induce neurogenesis from adult neural stem cells[J].Nature,2002,417:39-44.
    [32]Wang XF,Cynade MS.Astrocytes provide cysteine to neurous by releasing glutathione[J].J Neurochem,2000,74:1434-1442.
    [33]Federici G,Shaw B J,Handy R D.Toxicity of titanium dioxide nanoparticles to rainbow trout(Oncorhynchus mykiss):gill injury,oxidative stress,and other physiological effects[J].Aquat Toxicol,2007,84:415-430
    [34]Park E J,Choi J,Park Y K,et al.Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells[J].Toxicology,2008,245:90-100
    [35]Tedesco S,Doyle H,Redmond G,et al.Gold nanoparticles and oxidative stress in Mytilus edulis[J].Mar Environ Res,2008,66:131-133
    [36]王海洋,席华星,彭慧婷,等.纳米氧化铝的体外DNA损伤及氧化应激研究[J].职业与健康,2013,29(13):1545-1548.
    [37]郑浩.纳米氧化铝导致的氧化应激损伤研究[D].武汉:华中科技大学,2009.
    [38]李晓波.纳米氧化铝对大鼠肝组织细胞促凋亡作用研究[J].癌变畸变突变,2010,22(2):108-111.
    [39]李晓波.纳米氧化铝对神经小胶质细胞N9的细胞毒性初探[J].环境与健康杂志,2009,26(4):286-289.
    [40]吉俊伟,张勤丽,白茹,等.纳米氧化铝颗粒致ICR小鼠认知障碍的研究[J].中华医学会第十二次全国行为医学学术会议论文,2010:171-173.
    [41]吉俊伟,张勤丽,白茹,等.纳米氧化铝致ICR小鼠脑氧化应激水平的改变[J].中华劳动卫生职业病杂志,2011,29(6):434-436.
    [42]Nel A,Xia T,Madler L,et al.Toxic potential of materials at the nanolevel[J].Science,2006,311:622-627.
    [43]Fiedler N,Laumbach R,Kelly-Mc Neil K,et al.Health effects of a mixture of indoor air volatile organics,their ozone oxidation products,and stress[J].Environ Health Perspect,2005,113:1542-1548.
    [44]Oberdorster G,Finkelstein JN,Johnston C,et al.Acute pulmonary effects of ultrafine particles in rats and mice[J].Res Rep Health Eff Inst,2000,96:5-74.
    [45]Donaldson K,Brown D,Clouter A,et al.The pulmonary toxicology of ultrafine particles[J].J Aerosol Med,2002,15:213-220.
    [46]Lin PC,Lin S,Wang PC,et al.Techniques for physicochemical characterization of nanomaterials[J].Biotechnol Adv,2014,32:711-726.
    [47]Sayes CM,Liang F,Hudson JL,et al.Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro[J].Toxicol Lett,2006,161:135-142.
    [48]Ryman-Rasmussen JP,Riviere JE,Monteiro-Riviere NA.Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes[J].J Invest Dermatol,2007,127:143-153.
    [49]Hohr D,Steinfartz Y,Schins RP,et al.The surface area rather than the surface coating determines the acute inflammatory response after instillation of fine and ultrafine Ti O2in the rat[J].Int J Hyg Environ Health,2002,205:239-244.