金潮原因种铜藻外源无机碳利用特征初步研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preliminary studies on the utilization characteristics of exogenous inorganic carbon in Sargassum horneri, a gloden tide causative species
  • 作者:刘婷 ; 马增岭 ; 李慧 ; 徐智广
  • 英文作者:LIU Ting;MA Zeng-ling;LI Hui;XU Zhi-guang;College of Life and Environmental Science,Wenzhou University;College of Life Science,Ludong University;
  • 关键词:铜藻 ; 金潮 ; 光合固碳 ; pH ; 抑制剂
  • 英文关键词:Sargassum horneri;;golden tide;;photosynthetic carbon fixation;;pH;;inhibitors
  • 中文刊名:HTYY
  • 英文刊名:Marine Fisheries
  • 机构:温州大学生命与环境科学学院;鲁东大学生命科学学院;
  • 出版日期:2019-03-15
  • 出版单位:海洋渔业
  • 年:2019
  • 期:v.41
  • 基金:国家自然科学基金(41376129,41876124);; 国家海洋局海洋生态环境科学与工程重点实验室开放课题(MESE-2015-06);; 浙江省科技计划项目(2015C33246)
  • 语种:中文;
  • 页:HTYY201902008
  • 页数:9
  • CN:02
  • ISSN:31-1341/S
  • 分类号:72-80
摘要
为揭示铜藻(Sargassum horneri)对无机碳利用的基本特性及铜藻在漂浮过程中生物量迅速累积并最终发展为金潮的生理生态学机理,以我国近海金潮原因种铜藻为研究对象,在不同pH (6.5、8.0和9.5)条件下研究了添加TRIS缓冲剂、碳酸酐酶抑制剂(AZ、EZ)和阴离子交换蛋白抑制剂(DIDS)后藻体的固碳速率、光合作用-无机碳响应曲线(P-C曲线)及pH漂移曲线。结果显示,TRIS缓冲剂对铜藻的固碳速率无显著影响(P>0.05),而3种抑制剂均显著(P<0. 05)抑制铜藻的固碳速率且抑制效率从大至小依次为DIDS> EZ>AZ。藻体的固碳速率随着外源无机碳浓度的增加而增加,并渐趋饱和。此外,藻体的最大固碳速率(V_(max))随着pH的升高而降低,而半饱和常数(K_(0.5))则随着pH的升高而升高,藻体的pH补偿点为9.0左右。结果表明,铜藻既可以利用海水中的CO_2也可以利用HCO_3~-进行光合作用;并且铜藻对HCO_3~-的吸收存在通过阴离子交换蛋白直接转运吸收和利用碳酸酐酶将HCO_3~-转化为CO_2后再吸收两种方式。对HCO_3~-的高效吸收利用能力可能是铜藻保证维持较高光合作用、快速积累生物量并最终演变为金潮的重要因素之一。
        To reveal the basic characteristics of inorganic carbon utilization and ecophysiological mechanism of the rapid biomass accumulation of S. horneri during the floating process and eventually developing into the golden tide,the photosynthetic carbon fixation rates,P-C curves and pH drift curves of S. horneri,the golden tide causative species in China,were determined in the presence of TRIS buffer,carbonic anhydrase inhibitors(AZ,EZ) and anion exchanger inhibitors(DIDS) at different pH levels(6.5,8.0 and 9.5). The results showed that the photosynthetic carbon sequestration rates in the control group were(59.62 ± 2.35),(33.70 ± 1.51),(12.48 ± 0.32) μmol O_2· h~(-1)·g~(-1) FW,at p H values of 6.5,8.0 and 9.5,respectively. The photosynthetic carbon sequestration rates of the TRIS buffer treatment group were(58.66 ± 1.87),(33.38 ± 1.76),(12.26 ± 0.18) μmol O_2·h~(-1)·g~(-1 )FW,at pH values of 6.5,8.0 and 9.5,respectively. The TRIS buffer had no significant(P > 0.05) effect on the photosynthetic carbon fixation rates of S. horneri. But the three inhibitors significantly(P < 0.05) suppressed them,with the inhibition ratios of 7.25%,52.03% and 60.65% for AZ,EZ and DIDS,respectively. The photosynthetic carbon fixation rates of S. horneri increased with enhanced exogenous inorganic carbon concentration until arrived at the carbon dioxide saturation point. At the pH value of 6.5,the photosynthetic oxygen release rate reached saturation under the inorganic carbon concentration of 2.2 mmol·L~(-1),while at both pH values of 8.0 and 9.5,the photosynthetic oxygen release rate reached saturation under the inorganic carbon concentration of 8.8 mmol·L~(-1). The maximum photosynthetic carbon fixation rates(V_(max)) of algae decreased while the half-saturation constant(K_(0.5)) increased with the increased pH,the pH compensation point of S. horneri was about 9.0.These results indicated that S. horneri could utilize both CO_2 and HCO_3~- in seawater for photosynthesis.Furthermore,the absorption of HCO_3~- included the direct absorption through the anion-exchange protein and indirect absorption by transforming HCO_3~- into CO_2 through carbonic anhydrase outside of the cell membrane.The efficient absorption and utilization of HCO_3~- in S. horneri may be one of the important factors to ensure the high photosynthesis and rapid biomass accumulation of its floating thalli,and ensure its eventually developing into the golden tide.
引文
[1]SMETACEK V,ZINGONE A.Green and golden seaweed tides on the rise[J].Nature,2013,504(7478):84-88.
    [2]XU Z,GAO G,XU J,et al.Physiological response of a golden tide alga(Sargassum muticum)to the interaction of ocean acidification and phosphorus enrichment[J].Biogeosciences,2017,14(3):1-36.
    [3]QI L,HU C,WANG M,et al.Floating algae blooms in the East China Sea[J].Geophysical Research Letters,2017,44(11):501-509.
    [4]韩婷婷.大型海藻对不同CO2浓度的光合生理响应及其生态效应[D].青岛:中国科学院研究生院(海洋研究所),2013.HAN T T.Photosynthetic physiological responses of macroalgae to different CO2concentrations and their ecological effects[D].Qingdao:Graduate School of Chinese Academy of Sciences(Institute of Oceanology),2013.
    [5]王菁,陈家长,孟顺龙.环境因素对藻类生长竞争的影响[J].中国农学通报,2013,29(17):52-56.WANG Q,CHEN J Z,MENG S L.Effects of environmental factors on algae growth competition[J].Chinese Agricultural Bulletin,2013,29(17):52-56.
    [6]徐涛,宋立荣.三株铜绿微囊藻对外源无机碳利用的研究[J].水生生物学报,2007,31(2):245-250.XU T,SONG L R.Studies on the utility of inorganic carbon in three strains of microcystis aeruginosa[J].Acta Hydrobiologilogica Sinica,2007,31(2):245-250.
    [7]王培.几种水生藻类的碳汇效应研究[D].桂林:广西师范大学,2013.WANG P.Research of carbon sink effect of several aquatic algae[D].Guilin:Guangxi Normal University,2013.
    [8]DRECHSLER Z,SHARKIA R,CABANTCHIK Z I,et al.Bicarbonate uptake in the marine macroalga Ulva sp.is inhibited by classical probes of anion exchange by red blood cells[J].Planta,1993,191(1):34-40.
    [9]KVBLER J,RAVEN J.Consequences of light limitation for carbon acquisition in three rhodophytes[J].Marine Ecology Progress,1994,110(2-3):203-209.
    [10]SCHMID R.Photosynthesis of Ectocarpus siliculosus in red light and after pulses of blue light at high p H-evidence for bicarbonate uptake[J].Plant Cell&Environment,2010,21(5):523-529.
    [11]骆其君,裴鲁青.坛紫菜自由丝状体对无机碳的利用[J].水产学报,2002,26(5):477-480.LUO Q J,PEI L Q.Utilization of inorganic carbon by free filamentous bodies of Porphyra haitanensis[J].Journal of Fisheries,2002,26(5):477-480.
    [12]岳国峰,周百成.条斑紫菜对无机碳的利用[J].海洋与湖沼,2000,31(3):246-251.YUE G F,ZHOU B C.Inorganic carbon utilizationin by Porphyra yezoensis ueda[J].Oceanologia et Limnologia Sinica,2000,31(3):246-251.
    [13]ANDRIA J R,PEREZ-LLORENS J L,VERGARAJ J.Mechanisms of inorganic carbon acquisition in Gracilaria gaditana,nom.prov.(Rhodophyta)[J].Planta,1999,208(4):564-573.
    [14]岳国峰,王金霞,朱明远,等.藻类无机碳营养的研究进展(Ⅱ):藻类利用无机碳的机理及其调节[J].海洋科学,2003,27(6):31-34.YUE G F,WANG J X,ZHU M Y,et al.Progress of inorganic carbon acquisition by algae(Ⅱ):Mechenism and regulation[J].Marine Science,2003,27(6):31-34.
    [15]WANG Y,STESSMAN D J,SPALDING M H.The CO2concentrating mechanism and photosynthetic carbon assimilation in limiting CO2:How Chlamydomonas works against the gradient[J].Plant Journal,2015,82(3):429-448.
    [16]岳国峰,王金霞,王建飞,等.海带幼孢子体的光合碳利用[J].海洋与湖沼,2001,32(6):647-652.YUE G F,WANG J X,WANG J F,et al.Inorganic carbon acquisition by juvenile sporophyte of Laminarials(L.Japonic×L.Longissima)[J].Oceanologia et Limnologia Sinica,2001,32(6):647-652.
    [17]程苗,吴海一,詹冬梅,等.海黍子对外源无机碳利用机制的初步研究[J].植物生理学报,2015(5):679-685.CHENG M,WU H Y,ZHAN D M,et al.Preliminary study on exogenous inorganic carbon utilization in Sargassum muticum[J].Plant Physiology Journal,2015(5):679-685.
    [18]邹定辉,高坤山.坛紫菜光合作用对重碳酸盐的利用[J].科学通报,2002,47(12):926-930.ZOU D H,GAO K S.The use of bicarbonate by photosynthesis in Pyropia haitanensi[J].Science Bulletin,2002,47(12):926-930.
    [19]AXELSSON L,MERCADO J M,FIGUEROA F L.Utilization of HCO-3at high p H by the brown macroalga Laminaria saccharina[J].British Phycological Bulletin,2000,35(1):53-59.
    [20]ZOU D,GAO K,CHEN W.Photosynthetic carbon acquisition in Sargassum henslowianum(Fucales,Phaeophyta),with special reference to the comparison between the vegetative and reproductive tissues[J].Photosynthesis Research,2011,107(2):159-168.
    [21]VON C S,FARQUHAR G D.Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves[J].Planta,1981,153(4):376-387.
    [22]ZOU D,XIA J,YANG Y.Photosynthetic use of exogenous inorganic carbon in the agarophyte Gracilaria lemaneiformis(Rhodophyta)[J].Aquaculture,2004,237(1-4):421-431.
    [23]MERIAN E.A review of“aquatic chemistry(An introduction emphasizing chemical equilibria in natural waters)”[J].International Journal of Environmental Analytical Chemistry,2006,12(3-4):317-318.
    [24]许凯,陈虹兆,徐燕,等.p H对坛紫菜丝状体光合速率和无机碳利用的短时效应[J].集美大学学报(自然科学版),2018,23(1):1-7.XU K,CHEN H Z,XU Y,et al.Effects of p H on CO2concentrating mechanism of Pyropia haitanensis conchocelis[J].Journal of Jimei University(Natural Science Edition),2018,23(1):1-7.
    [25]FERNNDEZ P A,HURD C L,ROLEDA M Y,et al.Bicarbonate uptake via an anion exchange protein is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera(Laminariales,Phaeophyceae)under variable p H[J].Journal of Phycology,2014,50(6):998-1008.
    [26]RAVEN J A.Inorganic carbon acquisition by marine autotrophs[J].Advances in Botanical Research,1997,27(8):85-209.
    [27]SVLTEMEYER D.Carbonic anhydrase in eukaryotic algae:Characterization,regulation[J].Canadian Journal of Botany,1998,76(6):962-972.
    [28]SVLTEMEYER D,SCHMIDT C,FOCK H P.Carbonic anhydrases in higher plants and aquatic microorganisms[J].Physiologia Plantarum,2010,88(1):179-190.
    [29]王淑刚,杨锐,周新倩,等.高温胁迫下坛紫菜(Pyropia haitanensis)对无机碳的利用[J].海洋与湖沼,2013,44(5):1378-1385.WANG S G,YANG R,ZHOU X Q,et al.Utilization of inorgainc carbon in Pyropia haitanensis(Rhodophyta)under heat stress[J].Oceanologia et Limnologia Sinica,2013,44(5):1378-1385.
    [30]NIMER N A,DEBORA I M,MERRETT M J.Bicarbonate utilization by marine phytoplankton species[J].Journal of Phycology,1997,33(4):625-631.
    [31]CHRISTER L,LENNART A.Bi-carbonate uptake and utilization in marine macroalgae[J].British Phycological Bulletin,1999,34(1):79-86.
    [32]STEFAN S K,HERPPICH W B,HANELT D.Red alga Palmaria palmata-growth rate and photosynthetic performance under elevated CO2treatment[J].Journal of Applied Phycology,2017,29(1):381-393.
    [33]CORNWALL C E,HEPBURN C D,PRITCHARDD,et al.Carbon-use strategies in macroalgae:Differential responses to lowered p H and implications for ocean acidification[J].Journal of Phycology,2012,48(1):137-144.
    [34]PAJUSALU L,MARTIN G,PAALME T,et al.The effect of CO2enrichment on net photosynthesis of the red alga Furcellaria lumbricalis in a brackish water environment[J].Peer J,2016,4(10):1-21.
    [35]JOHNSTON A M,MABERLY S C,RAVEN J A.The acquisition of inorganic carbon by four red macroalgae[J].Oecologia,1992,92(3):317-326.
    [36]MABERLY S C.Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae[J].Journal of Phycology,1990,26(3):439-449.
    [37]KAPLAN A,REINHOLD L.CO2concentrating mechanisms in photosynthetic microorganisms[J].Annual Review of Plant Physiology and Plant Molecular Biology,1999,50(50):539-570.