液压推进型水下机器人的运动控制方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Motion control method of underwater vehicle with hydraulic thrusters
  • 作者:田烈余 ; 周锋 ; 张培豪 ; 陈宗恒
  • 英文作者:TIAN Lie-yu;ZHOU Feng;ZHANG Pei-hao;CHEN Zong-heng;Guangzhou Marine Geological Survey,Guangdong University;Zhejiang Jingsheng M&E Co.,Ltd.;Ocean College,Zhejiang University;
  • 关键词:液压推进器 ; PID控制 ; 转速闭环 ; 运动控制
  • 英文关键词:hydraulic thrusters;;PID control;;speed loop;;motion control
  • 中文刊名:JDGC
  • 英文刊名:Journal of Mechanical & Electrical Engineering
  • 机构:广州海洋地质调查局;浙江晶盛机电股份有限公司;浙江大学海洋学院;
  • 出版日期:2018-07-20
  • 出版单位:机电工程
  • 年:2018
  • 期:v.35;No.281
  • 基金:国家高技术研究发展计划(“863”计划)资助项目(2008AA092301)
  • 语种:中文;
  • 页:JDGC201807007
  • 页数:4
  • CN:07
  • ISSN:33-1088/TH
  • 分类号:38-41
摘要
针对液压推进型水下机器人的定向控制问题,对液压推进器的比例滞环、机器人多自由度运动模型、控制器设计等方面进行了研究,提出了液压推进器转速PI控制与ROV定向PID控制相结合的控制方法;在Matlab/Simulink中建立了海马号水下机器人的六自由度动力学模型,并设计了带螺旋桨转速PI闭环的定向控制器;该定向控制器包括控制手柄输入、定向PID控制器、推力分配及合成矩阵、螺旋桨转速PI控制器等,利用仿真试验模型对控制器进行了抗干扰测试。仿真结果表明:所提出的复合PID控制器可显著减小由于液压推进器推力不一致引起的定向角度控制误差,具有比常规PID控制器更好的控制性能。
        Aiming at the heading control problems of underwater vehicle with hydraulic thrusters,the proportional hysteresis,the multi-degree-of-freedom model of the robot,the design of the controller and so on were studied. A control method combining the thruster speed PI control and the heading PID control was proposed. The 6 degree of freedom model of Hama ROV was established in Matlab/Simulink,and a heading controller with the thruster speed PI loop was designed. This heading controller includes control handle input,a heading PID controller,thrust distribution and synthesis matrix,propeller rotation PI controllers. The simulation model was used to test the anti-interference performance of the controller. The simulation results indicate that this combined PID controller can decrease the angle error caused by the thrust imblance of the thrusters,and has better control performance compared with normal PID controller.
引文
[1]YE L I,PANG Y J,CHEN Y,et al.A hull-inspect ROV control system architecture[J].中国海洋工程:英文版,2009,23(4):751-761.
    [2]TEHRANI N H,HEIDARI M,ZAKERI Y,et al.Development,depth control and stability analysis of an underwater remotely operated vehicle(ROV)[C].2010 8th IEEE International Conference on Control and Automation,Xiamen:IEEE,2010.
    [3]HOU S P,CHEAH C C.PD control scheme for formation control of multiple autonomous underwater vehicles[C].IEEE/ASME International Conference on Advanced Intelligent Mechatronics,Singapore:IEEE,2009.
    [4]TANG Zhi-jie,PENG Yan,LUO Jun.A novel ROV depth control based on LSM fitting predictor and fuzzy compensation[C].2010 International Conference on Advanced Computer Theory and Engineering,Chengdu:IEEE,2010.
    [5]MA Zhi-jie,PANG Yong-jie,JIANG Chan-juan,et al.Research on the optimization of PID control of remotely operated underwater vehicle[C].2011 International Conference on Computer Science and Service System,Nanjin:IEEE,2011.
    [6]周锋.深海ROV液压推进系统的稳定性和控制方法研究[D].杭州:浙江大学机械工程学院,2015.
    [7]单俊峰,罗占涛,柳华.液压阀灌漏量的测试方法研究[J].液压气动与密封,2017(1):31-33.
    [8]FOSSEN T I.Guidance and control of ocean vehicles[M].New York:John Wiley&Sons Inc.,1994.
    [9]朱康武,顾临怡.作业型遥控水下运载器的多变量backstepping鲁棒控制[J].控制理论与应用,2011,28(10):1441-1446.
    [10]CAO J,YIN H,LIU C,et al.A fuzzy controller based on incomplete differential ahead PID algorithm for a remotely operated vehicle[J].Ocean Systems Engineering,2013,3(3):237-255.