Nb对铸造双相耐热钢高温氧化的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Nb on high temperature oxidation behavior in cast duplex heat-resistant steel
  • 作者:滕铝丹 ; 张拓 ; 臧其玉 ; 杨弋涛
  • 英文作者:TENG Lü-dan;ZHANG Tuo;ZANG Qi-yu;YANG Yi-tao;School of Materials Science and Engineering, Shanghai University;
  • 关键词:金属材料 ; 铸造双相耐热钢 ; 高温氧化 ; Nb元素
  • 英文关键词:metallic material;;cast duplex heat resistant steel;;high temperature oxidation;;Nb
  • 中文刊名:IRON
  • 英文刊名:Journal of Iron and Steel Research
  • 机构:上海大学材料科学与工程学院;
  • 出版日期:2019-04-15
  • 出版单位:钢铁研究学报
  • 年:2019
  • 期:v.31
  • 语种:中文;
  • 页:IRON201904010
  • 页数:9
  • CN:04
  • ISSN:11-2133/TF
  • 分类号:83-91
摘要
为探究Nb对双相耐热钢高温抗氧化性能的影响规律,采用扫描电镜、能谱分析和XRD等分析测试手段研究了1 000和1 100℃下含Nb双相耐热钢高温氧化性能。结果表明,双相耐热钢氧化层结构为氧化外层(MnCr_2O_4)→氧化内层(Cr_2O_3)→Si的内氧化层;Nb的加入加速双相耐热钢的表层氧化膜生长,降低了其抗氧化性能;随着Nb含量的增加,表层基体内部形成富Nb相,促进Si的沿晶界氧化而抑制Si的界面氧化,Cr_2O_3层和Si的内氧化层厚度均增加。在对高温抗氧化性能要求高的情况下,本双相耐热钢中Nb的质量分数应控制在0.8%以下。
        In order to research the effect of Nb on the high temperature oxidation resistance of duplex heat-resistant steel, the high temperature oxidation performance of Nb-containing duplex heat-resistant steel at 1 000 and 1 100 ℃ was investigated by scanning electron microscopy, energy spectrum analysis and XRD. The results show that the oxidation layer of duplex heat-resistant steel is composed of oxidized outer layer(MnCr_2O_4)→oxidized inner layer(Cr_2O_3)→inner oxide layer of Si; the addition of Nb accelerates the growth of surface oxide scale of duplex heat-resistant steel, while oxidation resistance is deteriorated. With the increase of Nb content, Nb-rich phase is formed in the surface matrix, which promotes oxidation along the grain boundary of Si and inhibits the interfacial oxidation of Si, and the thickness of Cr_2O_3 layer and inner oxide layer of Si increases. To meet higher requirements of high temperature oxidation resistance, the Nb content in the duplex heat-resistant steel should be below 0.8%.
引文
[1] 吴承建.金属材料学[M].北京:冶金工业出版社,2009.(Wu C J.Metal Materials Science[M].Beijing:Metallurgical Industry Press,2009.)
    [2] 赵成志,魏双胜,高亚龙,等.超临界与超超临界汽轮机耐热钢的研究进展[J].钢铁研究学报,2007,19(9):1.(Zhao C Z,Wei S S,Gao Y L,et al.Progress of heat-resistant steel for supercritical and ultra-supercritical steam turbine[J].Journal of Iron and Steel Research,2007,19(9):1.)
    [3] 杨珍,鲁金涛,李琰,等.2种600 ℃超临界锅炉用奥氏体钢的高温氧化行为[J].钢铁研究学报,2017,29(3):221.(Yang Z,Lu J T,Li Y,et al.Oxidation behavior of two austenitic steels used in 600 ℃ supercritical coal-fired power plants[J].Journal of Iron and Steel Research,2017,29(3):221.)
    [4] 梁伟成,徐光,戴方钦,等.ZG40Cr25Ni20奥氏体耐热钢的烧损研究[J].材料热处理学报,2017,38(2):77.(Liang W C,Xu G,Dai F Q,et al.Study on burning loss of ZG40Cr25Ni20 austenitic heat-resistant steel[J].Transactions of Materials and Heat Treatment,2017,38(2):77.)
    [5] Martinez-Villafaňe A,Chacon-Nava J G,Gaona-Tiburcio C,et al.Oxidation performance of a Fe-13Cr alloy with additions of rare earth elements[J].Materials Science and Engineering,2003,363A(1/2):15.
    [6] Ali-Loytty,Jussila,Valden.Optimization of the electrical properties of Ti-Nb stabilized ferritic;stainless steel SOFC interconnect alloy upon high-temperature oxidation:The role of excess Nb on the interfacial oxidation at the oxide-metal;interface[J].International Journal of Hydrogen Energy,2013,38(2):1039.
    [7] Kang Y,Mao W M,Chen Y J,et al.Influence of Nb content on grain size and mechanical properties of 18 wt.% Cr ferritic stainless steel[J].Materials Science and Engineering,2016,677A:453.
    [8] Seo H S,Yun D W,Kim K Y.Oxidation behavior of ferritic stainless steel containing Nb,Nb-Si and Nb-Ti for SOFC interconnect[J].International Journal of Hydrogen Energy,2013,38(5):2432.
    [9] Saeki I,Saito T,Furuichi R,et al.Growth process of protective oxides formed on type 304 and 430 stainless steels at 1 273 K[J].Corrosion Science,1998,40(8):1295.
    [10] 唐庆新,刘靖,韩静涛.奥氏体耐热不锈钢309S高温抗氧化性能研究[J].钢铁研究学报,2009,21(10):43.(Tang Q X,Liu J,Han J T.High temperature oxidation resistance of 309S austenitic stainless steel[J].Journal of Iron and Steel Research,2009,21(10):43.)
    [11] Jepson M,Higginson R L.The use of EBSD to study the microstructural development of oxide scales on 316 stainless steel[J].High Temperature Technology,2005,22(3/4):195.
    [12] 吴增强,常征,白银.9%~11%Cr锅炉用耐热钢在蒸汽中的氧化行为[J].钢铁研究学报,2015,27(4):51.(Wu Z Q,Chang Z,Bai Y.Oxidation behavior of 9%-11% Cr heat resistant boiler steel boiler in steam[J].Journal of Iron and Steel Research,2015,27(4):51.)
    [13] Buscail H,Messki S E,Riffard F,et al.Characterization of the oxides formed at 1 000 ℃ on the AISI 316L stainless steel—Role of molybdenum[J].Materials Chemistry and Physics,2008,111(2):491.
    [14] An L C,Cao J,Zhang T,et al.Cr diffusion and continuous repairing behavior during high-temperature oxidation of duplex stainless steel[J].Materials and Corrosion,2017,68(10):1.
    [15] 黄希祜.钢铁冶金原理[M].北京:冶金工业出版社,1981.(Huang X H.Principle of Steel Metallurgy[M].Beijing:Metallurgical Industry Press,1981.)
    [16] 李美栓.金属的高温腐蚀[M].北京:冶金工业出版社,2001.(Li M S.High Temperature Corrosion of Metals[M].Beijing:Metallurgical Industry Press,2001.)
    [17] Safikhani A,Esmailian M,Tinatiseresht T,et al.High temperature cyclic oxidation behavior of ferritic stainless steel with addition of alloying elements Nb and Ti for use in SOFCs interconnect[J].International Journal of Hydrogen Energy,2016,41(14):6045.
    [18] Kazuya Hosoi,Shigeru Ueda,Gao X,et al.Si-rich phases and their distributions in the oxide scale formed on 304 stainless steel at high temperatures[J].Journal of Nuclear Materials,2018,507:327.
    [19] 杨洋,王成铎,王光辉,等.铌对奥氏体耐热钢组织和高温抗氧化性能的影响[J].铸造,2018,67(2):112.(Yang Y,Wang C D,Wang G H,et al.Effect of Nb on microstructure and high temperature oxidation resistance of austenitic heat resistant Steel[J].China Foundry,2018,67(2):112.)
    [20] 黄训增,杨弋涛.铌钛双稳定430不锈钢高温氧化行为研究[J].材料研究学报,2014,28(9):641.(Huang X Z,Yang Y T.High temperature oxidation performance of a Nb and Ti stabilized 430 ferritic stainless steel[J].Chinese Journal of Materials Research,2014,28(9):641.
    [21] Ali-L?ytty H,Hannula M,Honkanen M,et al.Grain orientation dependent Nb-Ti microalloying mediated surface segregation on ferritic stainless steel[J].Corrosion Science,2016,112:204.