引入Sb降低CZTS硒化温度的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on antimony-incorporation lower selenized temperature of CZTS
  • 作者:王新收 ; 赵祥云 ; 贾泽远
  • 英文作者:WANG Xinshou;ZHAO Xiangyun;JIA Zeyuan;Key Lab for Special Functional Materials,Ministry of Education, Henan University;Henan University Minsheng College;
  • 关键词:CZTS ; Sb ; 硒化温度 ; 结晶性
  • 英文关键词:CZTS;;antimony;;selenized temperature;;crystallinity
  • 中文刊名:HXYA
  • 英文刊名:Chemical Research
  • 机构:河南大学特种功能材料教育部重点实验室;河南大学民生学院;
  • 出版日期:2019-03-25
  • 出版单位:化学研究
  • 年:2019
  • 期:v.30
  • 基金:国家自然科学基金(20871041、20903033、21203053和21271064);; 新世纪优秀人才(NCET-08-0659);; 河南大学科研启动基金(SBGJ090510和2010YBZR014)
  • 语种:中文;
  • 页:HXYA201902010
  • 页数:5
  • CN:02
  • ISSN:41-1083/O6
  • 分类号:59-63
摘要
采取直接在Cu_2ZnSnS_4(CZTS)驱体溶液中溶解锑基化合物的方法于CZTS中引入Sb,探究了不同浓度Sb的引入对于CZTS薄膜太阳能电池的影响.研究结果表明Sb的引入能够显著降低CZTS的硒化温度至470℃.同时XRD和SEM表征测试结果表明随着Sb引入浓度的增加,低温下制备的CZTS薄膜的结晶性得到了逐渐的增强.EQE测试结果表明Sb引入之后CZTS薄膜太阳能电池的光响应也得到了提升,最终能够大幅提升CZTS薄膜太阳能电池的各项光伏性能参数,在4%(物质的量分数) Sb的引入量时得到了7.72%的效率.
        Sb is introduced in Cu_2ZnSnS_4(CZTS) by directly dissolving Sb-based compound into CZTS precursor solution. The effect of Sb concentration on CZTS thin film solar cells is investigated. Research results show that Sb can significantly decrease the CZTS selenized temperature to 470 ℃. The results of XRD and SEM show that the crystallinity of CZTS films prepared at low temperature is improved by increasing the concentration of Sb. EQE results show that the optical response of CZTS thin film solar cells is also improved with Sb incorporation, and finally the photovoltaic performance parameters of CZTS thin film solar cells are simultaneously improved. Consequently, we achieved the best PCE of 7.72% at 470 ℃.
引文
[1] WALLACE S K,MITZI D B,WALSH A.The steady rise of kesterite solar cells [J].ACS Energy Letter,2017,2(4):776-779.
    [2] GUO J,ZhOU W H,PEI Y L,et al.High efficiency CZTSSe thin film solar cells from pure element solution:A study of additional Sn complement [J].Solar Energy Materials and Solar Cells,2016,155(155):209-215.
    [3] REDINGER A,BERG D M,DALE P J,et al.The consequences of kesterite equilibria for efficient solar cells [J].Journal of the American Chemical Society,2011,133(10):3320-3323.
    [4] WEBER A,MAINZ R ,SCHOCK H W.On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum [J].Journal of Appllied Physics,2010,107(1):013516.
    [5] SHIN B,ZHU Y,BOJARCZUK N A,et al.Control of an interfacial MoSe2 layer in Cu2ZnSnSe thin film solar cells:8.9% power conversion efficiency with a TiN diffusion barrier [J].Appllied Physics Letters,2012,101(5):053903.
    [6] FAN Q M,TIAN Q W,WANG H L,et al.Regulating the starting location of front-gradient enabled highly efficient Cu(In,Ga)Se2 solar cells via a facile thiol-amine solution approach [J].Journal of Materials Chemistry A,2018,6(9):4095-4101.
    [7] LI J B,CHAWLA V,CLEMENS B M.Investigating the role of grain boundaries in CZTS and CZTSSe thin film solar cells with scanning probe microscopy [J].Advanced Materials,2012,24(6):720-723.
    [8] TIAN Q W,LU H Y,DU Y C,et al.Green atmospheric aqueous solution deposition for high performance Cu2ZnSn(S,Se)4 thin film solar cells [J].Solar RRL,2018,2(12),1800233.
    [9] FU J,TIAN Q W,ZHOU Z J,et al.Improving the performance of solution-processed Cu2ZnSn(S,Se)4 photovoltaic materials by Cd2+ substitution [J].Chemistry of Materials,2016,28(16):5821-5828.
    [10] VAN EMBDEN J,CHESMAN A S R,GASPERA E D,et al.Cu2ZnSnS4xSe4(1-x) solar cells from polar nanocrystal inks [J].Journal of the American Chemical Society,2014,136(14):5237-5240.
    [11] YAN Z,ZHANG X,LI G,et al.High-throughput combinatorial chemical bath deposition:The case of doping Cu(In,Ga)Se film with antimony [J].Appllied Surface Science,2018,427:1235-1241.
    [12] QI Y F,KOU D X,ZHOU W H,et al.Engineering of interface band bending and defects elimination via a Ag-graded active layer for efficient (Cu,Ag)2ZnSn(S,Se)4 solar cells [J].Energy Environmental Science,2017,10(11):2401-2410.
    [13] LIN Y R,TUNUGUNTLA V,WEI S Y,et al.Bifacial sodium-incorporated treatments:Tailoring deep traps and enhancing carrier transport properties in Cu2ZnSnS4 solar cells [J].Nano Energy,2015,16:438-445.