MIL-125/4N-TiO_2复合光催化材料的制备及其光催化性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on preparation and photocatalysis of MIL-125/4N-TiO_2 composite material
  • 作者:熊乐艳 ; 张楠 ; 马伟 ; 郭赞如 ; 郑龙珍
  • 英文作者:Xiong Leyan;Zhang Nan;Ma Wei;Guo Zanru;Zheng Longzhen;School of Material Science and Engineering,East China Jiaotong University;
  • 关键词:复合材料 ; MIL-125/4N-TiO2 ; 吸附降解 ; 最优降解条件 ; 罗丹明6G
  • 英文关键词:composite material;;MIL-125/4N-TiO2;;absorption degradation;;optimum condition;;Rhodamine 6G
  • 中文刊名:HGXC
  • 英文刊名:New Chemical Materials
  • 机构:华东交通大学材料科学与工程学院;
  • 出版日期:2018-10-15
  • 出版单位:化工新型材料
  • 年:2018
  • 期:v.46;No.553
  • 基金:国家自然科学基金(21465011,51563009);; 江西省主要学科学术和技术带头人计划(20133BCB22007)
  • 语种:中文;
  • 页:HGXC201810052
  • 页数:7
  • CN:10
  • ISSN:11-2357/TQ
  • 分类号:216-222
摘要
通过凝胶-溶胶法、水热法分别制备了4N-TiO_2纳米粒子和MIL-125 MOFs两种材料。通过配位自组装法制备了复合材料MIL-125/4N-TiO_2。分别通过扫描电镜、红外光谱、XRD、N2吸附-脱附等手段对所制备的复合材料进行了表征。分析表明,得到了MIL-125/4N-TiO_2复合材料。通过光催化降解罗丹明6G模型化合物,发现复合材料具有光催化降解能力,并发现在pH为7的条件下,MIL-125与4N-TiO_2的比例为1∶1时,降解罗丹明6G效率最高,可达98.12%;MIL-125与4N-TiO_2的比例为3∶1时,吸附罗丹明6G效率最高,可达63.7%。通过分析光催化前后产物,得出该复合光催化剂能够吸附并光降解罗丹明6G。
        4N-TiO_2 particles and MIL-125 were prepared by the sol-gel method and hydrothermal method respectively.The MIL-125/4N-TiO_2 were prepared by coordination reaction induced self-assembly route.The MIL-125/4N-TiO_2 was characterized by scanning electron microscope(SEM),infrared spectroscopy(IR),X-ray diffraction(XRD)and nitrogen adsorption-desorption isotherm.Based on the results,it was found that MIL-125/4N-TiO_2 was synthesized successfully.Through the photocatalytic degradation of rhodamine 6 Gmodel compounds,the composite had the property of photocatalytic degradation.When pH value was 7,the ratio of MIL-125 and 4N-TiO_2 was 1∶1,the degradation ratio was the best of 98.12%.When the ratio of MIL-125 to 4N-TiO_2 was 3∶1,the adsorption ratio was 63.7%.By comparing the infrared spectra of composites before and after photocatalytic oxidation,it was concluded that the composite was able to adsorb rhodamine 6 G,and then photocatalytic degraded it.
引文
[1]Rafatullah M,Sulaiman O,Hashim R,et al.Adsorption of methylene blue on low-cost adsorbents:a review[J].Journal of Hazardous Materials,2010,177(1/3):70-80.
    [2]Gupta V K,Kumar R,Nayak A,et al.Adsorptive removal of dyes from aqueous solution onto carbon nanotubes:a review[J].Advances in Colloid&Interface Science,2013,193/194(6):24-34.
    [3]Mahmoodi N M,Salehi R,Arami M,et al.Dye removal from colored textile wastewater using chitosan in binary systems[J].Desalination,2011,267(1):64-72.
    [4]董泽民.纳米复合界面的构筑及其在光催化中应用的研究[D].南昌:华东交通大学,2014.
    [5]Fox M A,Dulay M T.Heterogeneous photocatalysis[J].Chemical Reviews,1993,93(1):341-357.
    [6]Hoffmann M R,Choi W,Bahnemann D W.Environmental applications of semiconductor photocatalysis[J].Chemical Reviews,1995,95(1):69-96.
    [7]Zhu J,Deng Z,Chen F,et al.Hydrothermal doping method for preparation of Cr3+-TiO2,photocatalysts with concentration gradientdistribution of Cr3+[J].Applied Catalysis B Environmental,2006,62(3/4):329-335.
    [8]Choi W,Termin A,Hoffmann M R.The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics[J].Journal of Physical Chemistry,1994,98(51):13669-13679.
    [9]Yadav H M,Kolekar T V,Pawar S H,et al.Enhanced photocatalytic inactivation of bacteria on Fe-containing TiO2nanoparticles under fluorescentlight[J].Journal of Materials Science Materials in Medicine,2016,27(3):2103-2108.
    [10]Martha S,Das D P,Biswal N,et al.Facile synthesis of visible light responsive V2O5/N/S-TiO2 composite photocatalyst:enhanced hydrogen production and phenol degradation[J].Journal of Materials Chemistry,2012,22(22):10695-10703.
    [11]Asahi R,Morikawa T,Ohwaki T,et al.Visible-light photocatalysis in nitrogen-doped titanium oxides[J].Science,2001,293(5528):269-71.
    [12]Hang N T P,Truong N D,Nguyen L T,et al.Enhancement of the visible light photocatalytic activity of vanadium and nitrogen co-doped TiO2thin film[J].Journal of Nonlinear Optical Physics&Materials,2016,25(4).
    [13]Asahi R,Morikawa T,Ohwaki T,et al.Visible-light photocatalysis in nitrogen-dopedtitanium oxides[J].Science,2001,293(5528):269-271.
    [14]Yasushige Kuroda,Toshinori Mori,Kazunori Yagi,et al.Preparation of visible-light-responsive TiO2-xNxphotocatalyst by a sol-gel method:analysis of the active centeron TiO2that reacts with NH3[J].Langmuir the Acs Journal of Surfaces&Colloids,2005,21(17):8026-8034.
    [15]Horst K,Shanmugasundaram S,Marcin J A,et al.A low-band gap,nitrogen-modified titania visible-light photocatalyst[J].Journal of Physical Chemistry C,2007,111(30):11445-11449.
    [16]Yang K,Dai Y,Huang B.Study of the nitrogen concentration influence on N-doped TiO2anatase from first-principles calculations[J].Journal of Physical Chemistry C,2007,111(32):12086-12090.
    [17]Sun S,Sun M,Fang Y,et al.One-step in situ calcination synthesis of g-C3N4/N-TiO2hybrids with enhanced photoactivity[J].Rsc Advances,2016,6(16).
    [18]Bhirud A P,Sathaye S D,Waichal R P,et al.In-situ preparation of N-TiO2/graphene nanocomposite and its enhanced photocatalytic hydrogen production by H2S splitting under solar light[J].Nanoscale,2015,7(11):5023-34.
    [19]Zhao D,Timmons D J,Yuan D,et al.Tuning the topology and functionality of metal-organic frameworks by ligand design[J].Accounts of Chemical Research,2011,44(2):123-33.
    [20]Chae H K,Siberio-Pérez D Y,Kim J,et al.A route to high surface area,porosity and inclusion of large molecules in crystals[J].Nature,2004,427(6974):523-527.
    [21]Seo J S,Whang D,Lee H,et al.A homochiral metal-organic porous material for enantioselective separation and catalysis[J].Nature,2000,404(6781):982-926.
    [22]Deng H,Doonan C J,Furukawa H,et al.Multiple functional groups of varying ratios in metal-organic frameworks[J].Science,2010,327(5967):846-850.
    [23]Chen B,Xiang S,Qian G.Metal-organic frameworks with functional pores for recognition of small molecules[J].Accounts of Chemical Research,2010,43(8):1115-1124.
    [24]Kurmoo M.Magnetic metal-organic frameworks[J].Chemical Society Reviews,2009,38(5):1353-1379.
    [25]Wang C,Lin W.Diffusion-controlled luminescence quenching in metal-organic frameworks[J].Journal of the American Chemical Society,2011,133(12):4232-4235.
    [26]Ma Z,Moulton B.Recent advances of discrete coordination complexes and coordination polymers in drug delivery[J].Coordination Chemistry Reviews,2011,255(15/16):1623-1641.
    [27]Bhakta R K,Herberg J L,Jacobs B,et al.Metal-organic frameworks as templates for nanoscale NaAlH4[J].Journal of the American Chemical Society,2009,131(37):13198-13199.
    [28]Zheng N,Bu X,Feng P.Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity[J].Nature,2003,426(6965):428-432.
    [29]Kuppler R J,Timmons D J,Fang Q R,et al.Potential applications of metal-organic frameworks[J].Coordination Chemistry Reviews,2009,253(23/24):3042-3066.
    [30]陈琪,费霞,何琴琴,等.MIL-101/P25复合材料的制备及光催化性能[J].无机化学学报,2014,30(5):993-1000.
    [31]武其亮.掺杂介孔二氧化钛及与有机聚合物、钛基MOF复合材料的制备和可见光光催化性质[D].合肥:合肥工业大学,2013.
    [32]Jin D,Xu Q,Yu L,et al.Photoelectrochemical detection of the herbicide clethodim by using the modified metal-organic framework amino-MIL-125(Ti)/TiO2[J].Microchimica Acta,2015,182(11/12):1885-1892.
    [33]Carp O,Patron L,Diamandescu L,et al.Thermal decomposition study of the coordination compound[Fe(urea)6](NO3)3[J].Thermochimica Acta,2002,390(1/2):169-177.
    [34]Wu P Y,Jiang Y P,Zhang Q Y,et al.Comparative study on arsenate removal mechanism of MgO and MgO/TiO2composites:FT-IR and XPS analysis[J].New Journal of Chemistry,2016,40(3):2878-2885.
    [35]Danhardi M,Serre C,Frot T,et al.A new photoactive crystalline highly porous titanium(Ⅳ)dicarboxylate[J].Journal of the American Chemical Society,2009,131(131):10857-10859.
    [36]高濂.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社材料科学与工程出版中心,2002.
    [37]孙奉玉,吴鸣,李文钊,等.二氧化钛的尺寸与光催化活性的关系[J].催化学报,1998,19(3):229-233.