Additive manufacturing of Ti-6Al-4V lattice structures with high structural integrity under large compressive deformation
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Additive manufacturing of Ti-6Al-4V lattice structures with high structural integrity under large compressive deformation
  • 作者:Kun ; Yang ; Jian ; Wang ; Liang ; Jia ; Guangyu ; Yang ; Huiping ; Tang ; Yuanyuan ; Li
  • 英文作者:Kun Yang;Jian Wang;Liang Jia;Guangyu Yang;Huiping Tang;Yuanyuan Li;College of Materials Science and Engineering,Jilin University;State Key Laboratory of Porous Metal Materials,Northwest Institute for Nonferrous Metal Research;
  • 英文关键词:Selective electron beam melting;;Ti-6Al-4V;;Lattice structures;;Ductility;;Annealing;;Beta annealing
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:College of Materials Science and Engineering, Jilin University;State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research;
  • 出版日期:2019-02-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:supported by the National Key Research and Development Project (Grant No. 2016 YFB 1101403);; the National Key Foundation for Exploring Scientific Instrument of China (Grant No. 2016 YQ 51627805)
  • 语种:英文;
  • 页:CLKJ201902007
  • 页数:6
  • CN:02
  • ISSN:21-1315/TG
  • 分类号:77-82
摘要
Additively manufactured Ti-6 Al-4 V lattice structures have found important niche applications. However, they often show insufficient compressive ductility or insufficient structural integrity. In this study,a batch of 45 octahedral Ti-6 Al-4 V lattice structures was manufactured in three different strut diameters(0.5, 1.0, 1.5 mm) by selective electron beam melting(SEBM). The influence of post-SEBM annealing on the compressive deformation characteristics of the lattice structure was investigated. The as-built Ti-6 Al-4 V lattices fragmented when the compressive strain reached 13%–23% depending on strut diameter.Annealing at 950?C(β transus temperature: 995?C) only slightly improved the compressive ductility of the lattice structures. However, annealing at 1050?C(β-annealing) fundamentally changed the compressive deformation mode of the lattice structures. The resultant compressive stress-strain curve was featured by a long smooth plateau and no facture occurred even after significant densification of the lattice structure had taken place(>50% of compressive strain).
        Additively manufactured Ti-6 Al-4 V lattice structures have found important niche applications. However, they often show insufficient compressive ductility or insufficient structural integrity. In this study,a batch of 45 octahedral Ti-6 Al-4 V lattice structures was manufactured in three different strut diameters(0.5, 1.0, 1.5 mm) by selective electron beam melting(SEBM). The influence of post-SEBM annealing on the compressive deformation characteristics of the lattice structure was investigated. The as-built Ti-6 Al-4 V lattices fragmented when the compressive strain reached 13%–23% depending on strut diameter.Annealing at 950?C(β transus temperature: 995?C) only slightly improved the compressive ductility of the lattice structures. However, annealing at 1050?C(β-annealing) fundamentally changed the compressive deformation mode of the lattice structures. The resultant compressive stress-strain curve was featured by a long smooth plateau and no facture occurred even after significant densification of the lattice structure had taken place(>50% of compressive strain).
引文
[1] X.Z. Zhang, M. Leary, H.P. Tang, T. Song, M. Qian, Curr. Opin. Solid State Mater.Sci. 22(2018)75–99.
    [2] S. Zhao, S.J. Li, W.T. Hou, Y.L. Hao, R. Yang, R.D.K. Misra, J. Mech. Behav.Biomed. Mater. 59(2016)251–264.
    [3] L. Xiao, W. Song, C. Wang, H. Tang, N. Liu, J. Wang, Int. J. Mech. Sci. 115-116(2016)310–317.
    [4] L. Huynh, J. Rotella, M.D. Sangid, Mater. Des. 105(2016)278–289.
    [5] E. Hernández-Nava, C.J. Smith, F. Derguti, S. Tammas-Williams, F. Leonard, P.J.Withers, I. Todd, R. Goodall, Acta Mater. 108(2016)279–292.
    [6] S. Arabnejad, R. Burnett Johnston, J.A. Pura, B. Singh, M. Tanzer, D. Pasini, Acta Biomater. 30(2016)345–356.
    [7] X.Y. Cheng, S.J. Li, L.E. Murr, Z.B. Zhang, Y.L. Hao, R. Yang, F. Medina, R.B.Wicker, J. Mech. Behav. Biomed. Mater. 16(2012)153–162.
    [8] L. Yang, O. Harrysson, H. West, D. Cormier, Acta Mater. 60(2012)3370–3379.
    [9] E. Sallica-Leva, A.L. Jardini, J.B. Fogagnolo, J. Mech. Behav. Biomed. Mater. 26(2013)98–108.
    [10] S.J. Li, Q.S. Xu, Z. Wang, W.T. Hou, Y.L. Hao, R. Yang, L.E. Murr, Acta Biomater.10(2014)4537–4547.
    [11] E. Hernández-Nava, C.J. Smith, F. Derguti, S. Tammas-Williams, F. Léonard, P.J.Withers, I. Todd, R. Goodall, Acta Mater. 85(2015)387–395.
    [12] F. Froes, M. Qian, Titanium in Medical and Dental Applications, Woodhead Publishing, London, 2017.
    [13] W. Yuan, W. Hou, S. Li, Y. Hao, R. Yang, L.-C. Zhang, Y. Zhu, J. Mater. Sci.Technol. 34(2017)1127–1131.
    [14] S.Y. Chen, J.C. Huang, C.T. Pan, C.H. Lin, T.L. Yang, Y.S. Huang, C.H. Ou, L.Y.Chen, D.Y. Lin, H.K. Lin, T.H. Li, J.S.C. Jang, C.C. Yang, J. Alloys Compd. 713(2017)248–254.
    [15] A. Yánez, A. Herrera, O. Martel, D. Monopoli, H. Afonso, Mater. Sci. Eng. C 68(2016)445–448.
    [16] B. Wysocki, J. Idaszek, K. Szl?azak, K. Strzelczyk, T. Brynk, K. Kurzyd?owski, W.′Swi?eszkowski, Materials(Basel)9(2016)197–216.
    [17] Y.Y. Sun, S. Gulizia, C.H. Oh, D. Fraser, M. Leary, Y.F. Yang, M. Qian, JOM 68(2016)791–798.
    [18] C. de Formanoir, M. Suard, R. Dendievel, G. Martin, S. Godet, Addit. Manuf. 11(2016)71–76.
    [19] M. Dallago, V. Fontanari, E. Torresani, M. Leoni, C. Pederzolli, C. Potrich, M.Benedetti, J. Mech. Behav. Biomed. Mater. 78(2018)381–394.
    [20] C. Yan, L. Hao, A. Hussein, Q. Wei, Y. Shi, Mater. Sci. Eng. C. 75(2017)1515–1524.
    [21] M.W. Wu, J.K. Chen, B.H. Lin, P.H. Chiang, Mater. Des. 134(2017)163–170.
    [22] B. Van Hooreweder, Y. Apers, K. Lietaert, J.-P. Kruth, Acta Biomater. 47(2017)193–202.
    [23] E. Sallica-Leva, R. Caram, A.L. Jardini, J.B. Fogagnolo, J. Mech. Behav. Biomed.Mater. 54(2016)149–158.
    [24] F. Brenne, T. Niendorf, H.J. Maier, J. Mater, Process. Technol. 213(2013)1558–1564.
    [25] I. Polmear, D. StJohn, J.F. Nie, M. Qian, in:I. Polmear, D. StJohn, J.F. Nie, M. Qian(Eds.), Light Alloys, fifth edition, Butterworth-Heinemann, Boston, 2017, pp.369–460.
    [26] H.P. Tang, M. Qian, N. Liu, X.Z. Zhang, G.Y. Yang, J. Wang, JOM 67(2015)555–563.
    [27] G. Pyka, G. Kerckhofs, I. Papantoniou, M. Speirs, J. Schrooten, M. Wevers,Materials(Basel)6(2013)4737–4757.
    [28] G. Lütjering, J.C. Williams, Titanium, Springer Berlin Heidelberg, New York,2007.