共培养诱导心外膜祖细胞向血管平滑肌细胞的分化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Co-culture with umbilical vein endothelial cells promotes differentiation of epicardial progenitor cells into vascular smooth muscle cells
  • 作者:李英瑞 ; 李郁 ; 景小东 ; 刘亚杰 ; 赵郑波 ; 刘斌 ; 佘强
  • 英文作者:LI Yingrui;LI Yu;JING Xiaodong;LIU Yajie;ZHAO Zhengbo;LIU Bin;SHE Qiang;Department of Cardiology,the Second Affiliated Hospital of Chongqing Medical University;
  • 关键词:心外膜祖细胞 ; Transwell共培养 ; 细胞分化
  • 英文关键词:epicardial progenitor cells;;co-culture;;cell differentiation
  • 中文刊名:DSDX
  • 英文刊名:Journal of Third Military Medical University
  • 机构:重庆重庆医科大学附属第二医院心血管内科;
  • 出版日期:2019-01-17 10:51
  • 出版单位:第三军医大学学报
  • 年:2019
  • 期:v.41;No.557
  • 基金:国家自然科学基金面上项目(81770251);国家自然科学基金青年科学基金(81800254);; 重庆市渝中区科委基础与前沿研究计划项目(20170107)~~
  • 语种:中文;
  • 页:DSDX201906009
  • 页数:7
  • CN:06
  • ISSN:50-1126/R
  • 分类号:56-62
摘要
目的探讨冠脉发育过程中,血管内皮细胞是否可以影响心外膜祖细胞(epicardial progenitor cells,EpiCs)的分化从而调节冠状动脉的发育。方法饲养7~8周龄成年C57BL/6小鼠60只(雌、雄各半,体质量25~30 g)。提取出高纯度的EpiCs,实验分为对照组与共培养组,通过Transwell共培养系统探讨血管内皮细胞和EpiCs间的相互作用,采用细胞免疫荧光技术和荧光定量PCR分别检测EpiCs标志物WT1和Tbx18、平滑肌细胞标志物α-SMA和Myh11的蛋白表达与mRNA表达;胶原凝胶收缩实验检测细胞收缩能力;ELISA实验检测培养基中生长因子的表达。结果与对照组比较,共培养系统下血管内皮细胞可促进EpiCs中α-SMA[(1.73±0.85)%vs(34.20±3.38)%,P<0.01,n=3]与Myh11[(3.70±1.49)%vs(45.63±4.85)%,P<0.01,n=3]的表达并增强EpiCs的收缩能力,并且对共培养条件培养基的检测可见在此过程中碱性成纤维细胞生长因子(basic fibroblast growth factors,bFGFs)的升高[(87.64±8.78)vs(304.96±52.91)pg/mL,P<0.01,n=3]。结论血管内皮细胞可通过分泌bFGFs调节EpiCs向血管平滑肌细胞的分化,从而调节冠状动脉的发育。
        Objective To investigate whether vascular endothelial cells affect the differentiation of epicardial progenitor cells(EpiCs) during coronary development. Methods Highly purified EpiCs were extracted from 30 female and 30 male C57 BL/6 mice(7 to 8 weeks old, body weight 25-30 g) and cultured alone or in the presence of human umbilical vein endothelial cells(HUVECs) in a Transwell co-culture system. The expressions of EpiCs markers WT1 and Tbx18 and the smooth muscle cell markers α-SMA and Myh11 were detected using immunofluorescence assay and qRT-PCR. Collagen gel contraction assay was used to assess the contractility of the cultured EpiCs, and ELISA was used to detect the expression of growth factors in the cell culture medium. Results Compared with EpiCs cultured alone, the EpiCs co-cultured with HUVECs exhibited significantly increased expression levels of α-SMA [(1.73±0.85)% vs(34.20±3.38)%, P<0.01, n=3] and Myh11 [(3.70±1.49)% vs(45.63±4.85)%, P<0.01, n=3] with obviously enhanced contractile ability. The concentration of basic fibroblast growth factors(bFGFs) in the conditioned medium was also significantly higher in the co-cultured cells than in EpiCs cultured alone(304.96±52.91 vs 87.64±8.78 pg/mL, P<0.01, n=3). Conclusion In the co-culture system of EpiCs and HUVECs, the production of bFGFs by HUVECs promotes the differentiation of EpiCs into vascular smooth muscle cells, indicating a regulatory mechanism of the development of coronary arteries.
引文
[1] GITTENBERGER-DE GROOT A C, VRANCKEN PEETERS M P, BERGWERFF M, et al. Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation [J]. Circ Res, 2000, 87(11): 969-971. DOI: 10.1161/01.RES.87.11.969.
    [2] JING X, GAO Y, XIAO S, et al. Hypoxia induced the differentiation of Tbx18-positive epicardial cells to CoSMCs [J]. Sci Rep, 2016, 6: 30468. DOI: 10.1038/srep30468.
    [3] PENNISI D J, MIKAWA T. FGFR-1 is required by epicardium-derived cells for myocardial invasion and correct coronary vascular lineage differentiation[J]. Dev Biol, 2009, 328(1): 148-159. DOI: 10.1016/j.ydbio.2009.01.023.
    [4] QIN Q, WANG J, YAN Y, et al. Angiotensin Ⅱinduces the differentiation of mouse epicardial progenitor cells into vascular smooth muscle-like cells [J]. Biochem Biophys Res Commun, 2016, 480(4): 696-701. DOI: 10.1016/j.bbrc.2016.10.122.
    [5] RATAJSKA A, CZARNOWSKA E, CISZEK B, et al. Embryonic development of the proepicardium and coronary vessels [J]. Int J Dev Biol, 2008, 52(2/3): 229-236. DOI: 10.1387/ijdb.072340ar.
    [6] HERBERT S P, STAINIER D Y. Molecular control of endothelial cell behaviour during blood vessel morphogenesis [J]. Nat Rev Mol Cell Biol, 2011, 12(9): 551-564. DOI: 10.1038/nrm3176.
    [7] GAENGEL K, GENOVE G, ARMULIK A, et al. Endothelial-mural cell signaling in vascular development and angiogenesis[J]. Arterioscler Thromb Vasc Biol, 2009, 29(5): 630-638. DOI: 10.1161/ATVBAHA.107.161521.
    [8] RAMJEE V, LI D, MANDERFIELD L J, et al. Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction[J].J Clin Invest, 2017, 127(3): 899-911. DOI: 10.1172/JCI88759.
    [9] RAO K S, SPEES J L.Harnessing epicardial progenitor cells and their derivatives for rescue and repair of cardiac tissue after myocardial infarction [J].Curr Mol Biol Rep, 2017, 3(3): 149-158. DOI: 10.1007/s40610-017-0066-6.
    [10] AZAMBUJA A P, PORTILLO-SANCHEZ V, RODRIGUES M V, et al. Retinoic acid and VEGF delay smooth muscle relative to endothelial differentiation to coordinate inner and outer coronary vessel wall morphogenesis [J].Circ Res, 2010, 107(2): 204-216. DOI: 10.1161/CIRCRESAHA.109.214650.
    [11] SMITH C L, BAEK S T, SUNG C Y, et al. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling [J]. Circ Res, 2011, 108(12): e15-26. DOI: 10.1161/CIRCRESAHA.110.235531.
    [12] WIESE C, GRIEKKAMP T, AIRIK R, et al. Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3 [J]. Circ Res, 2009, 104(3): 388-397. DOI: 10.1161/CIRCRESAHA.108.187062.
    [13] LI J, L I S H, WU J, et al. Young bone marrow Sca-1 cells rejuvenate the aged heart by promoting epithelial-to-mesenchymal transition[J]. Theranostics, 2018, 8(7): 1766-1781. DOI: 10.7150/thno.22788.
    [14] MAJESKY M W. Development of coronary vessels [J]. Curr Top Dev Biol, 2004, 62: 225-259. DOI: 10.1016/S0070-2153(04)62008-4.
    [15] ZHOU B, HONOR L B, HE H, et al. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors [J]. J Clin Invest, 2011, 121(5): 1894-1904. DOI: 10.1172/JCI45529.
    [16] WU S P, DONG X R, REGAN J N, et al. Tbx18 regulates development of the epicardium and coronary vessels [J]. Dev Biol, 2013, 383(2): 307-320. DOI: 10.1016/j.ydbio.2013.08.019.
    [17] HIRSCHI K K, ROHOVSKY S A, D’AMORE P A, et al. PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate [J]. J Cell Biol, 1998, 141(3): 805-814. DOI: 10.1083/jcb.141.3.805.
    [18] MERFELD-CLAUSS S, LUPOV I P, LU H, et al. Adipose stromal cells differentiate along a smooth muscle lineage pathway upon endothelial cell contact via induction of activin A [J]. Circ Res, 2014, 115(9): 800-809. DOI: 10.1161/CIRCRESAHA.115.304026.
    [19] BEENKEN A, MOHAMMADI M. The FGF family: biology, pathophysiology and therapy [J]. Nat Rev Drug Discov, 2009, 8(3): 235-253. DOI: 10.1038/nrd2792.
    [20] STRUTZ F, ZEISBERG M, ZIYADEH F N, et al.Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation [J]. Kidney Int, 2002, 61(5): 1714-1728. DOI: 10.1046/j.1523-1755.2002.00333.x.
    [21] MERKI E, ZAMORA M, RAYA A, et al. Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation [J]. Proc Natl Acad Sci U S A, 2005, 102(51): 18455-18460. DOI: 10.1073/pnas.0504343102.