纺锤体可塑性与动力学调控
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Regulation of Spindle Plasticity and Dynamics
  • 作者:刘行 ; 刘旭 ; 姚雪彪
  • 英文作者:Liu Xing;Liu Xu;Yao Xuebiao;Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China;
  • 关键词:细胞有丝分裂 ; 纺锤体 ; 化学生物学 ; 类器官 ; 干细胞动力学
  • 英文关键词:mitosis;;spindle;;chemical biology;;organoids;;stem cell dynamics
  • 中文刊名:XBZZ
  • 英文刊名:Chinese Journal of Cell Biology
  • 机构:中国科学技术大学安徽省细胞动力学与化学生物学重点实验室;
  • 出版日期:2019-04-02 13:30
  • 出版单位:中国细胞生物学学报
  • 年:2019
  • 期:v.41
  • 基金:科技部重点研发计划(批准号:2017YFA0503600、2016YFA0100500);; 国家自然科学基金(批准号:31621002、31320103904);; 中国科学院战略性先导科技专项(B类)(批准号:XDB19040100)资助的课题~~
  • 语种:中文;
  • 页:XBZZ201903008
  • 页数:9
  • CN:03
  • ISSN:31-2035/Q
  • 分类号:49-57
摘要
细胞精确的自我复制依赖纺锤体的可塑性和精准调控。功能纺锤体的形成取决于着丝粒动力学、纺锤体微管和星状微管可塑性的时空动态调控。纺锤体的可塑性研究在过去的三十年间取得了迅猛的发展,生物化学研究发现并鉴定了大量的纺锤体蛋白与翻译后修饰,结构生物学研究解析和阐明了部分关键蛋白的结构和作用机制。如何解析纺锤体高级结构的变化与其对应的生物学意义,并把纺锤体的动态表观标示转化为三维类器官干细胞增殖的质量控制标准将是下一阶段纺锤体可塑性与调控研究的重要科学问题。该文将简介纺锤体可塑性与动力学研究进展及研究前景。
        Accurate chromosome segregation depends on the spatiotemporal orchestration of centromere assembly, spindle and astral microtubule plasticity. The spindle plasticity control and regulation have been exciting subjects for intensive cross-disciplinary research over the last three decades. Biochemical characterization has identified a diversified spectrum of post-translational modifications while structure studies have determined the atomic determinants functional activity. However, it has remained elusive as to the relationship between dynamics of biomolecular conformation and functional activity in space and time. In addition, it is poorly illustrated as whether regulatory mechanisms underlying two dimensional control of mitotic spindle plasticity can be translated into the molecular delineation of cell cycle regulation in three dimensional cultures such as organoids. This article summarizes the progresses and perspectives of spindle plasticity and molecular dynamics.
引文
1 Cleveland DW,Mao Y,Sullivan KF.Centromeres and kinetochores:from epigenetics to mitotic checkpoint signaling.Cell 2003;112(4):407-21.
    2 McKinley KL,Cheeseman IM.The molecular basis for centromere identity and function.Nat Rev Mol Cell Biol 2016;17(1):16-29.
    3 Yao X,Fang G.Visualization and orchestration of the dynamic molecular society in cells.Cell Res 2009;19(2):152-5.
    4 Ren J,Liu Z,Gao X,Jin C,Ye M,Zou H,et al.MiCroKit 3.0:an integrated database of midbody,centrosome and kinetochore.Nucleic Acids Res 2010;38:D155-60.
    5 Xue Y,Zhou F,Zhu M,Ahmed K,Chen G,Yao X.GPS:a comprehensive www server for phosphorylation sites prediction.Nucleic Acids Res 2005;33:W184-7.
    6 Tao Y,Jin C,Li X,Qi S,Chu L,Niu L,et al.The structure of the FANCM-MHF complex reveals physical features for functional assembly.Nat Commun 2012;3:782.
    7 Nishino T,Takeuchi K,Gascoigne KE,Suzuki A,Hori T,Oyama T,et al.CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold.Cell 2012;148(3):487-501.
    8 Wang J,Liu X,Dou Z,Chen L,Jiang H,Fu C,et al.Mitotic regulator Mis18beta interacts with and specifies the centromeric assembly of molecular chaperone holliday junction recognition protein(HJURP).J Biol Chem 2014;289(12):8326-36.
    9 Zhou X,Zheng F,Wang C,Wu M,Zhang X,Wang Q,et al.Phosphorylation of CENP-C by Aurora B facilitates kinetochore attachment error correction in mitosis.Proc Natl Acad Sci USA2017;114(50):E10667-76.
    10 Ding M,Jiang J,Yang F,Zheng F,Fang J,Wang Q,et al.HJURPinteracts with and specifies the centromeric assembly of CENP-T.J Biol Chem 2019;294(3):968-80.
    11 Hu H,Liu Y,Wang M,Fang J,Huang H,Yang N,et al.Structure of a CENP-A-histone H4 heterodimer in complex with chaperone HJURP.Genes Dev 2011;25(9):901-6.
    12 Yu Z,Zhou X,Wang W,Deng W,Fang J,Hu H,et al.Dynamic phosphorylation of CENP-A at Ser68 orchestrates its cell-cycledependent deposition at centromeres.Dev Cell 2015;32(1):68-81.
    13 Fang J,Liu Y,Wei Y,Deng W,Yu Z,Huang L,et al.Structural transitions of centromeric chromatin regulate the cell cycle-dependent recruitment of CENP-N.Genes Dev 2015;29(10):1058-73.
    14 Tian T,Li X,Liu Y,Wang C,Liu X,Bi G,et al.Molecular basis for CENP-N recognition of CENP-A nucleosome on the human kinetochore.Cell Res 2018;28(3):374-8.
    15 Pentakota S,Zhou K,Smith C,Maffini S,Petrovic A,Morgan GP,et al.Decoding the centromeric nucleosome through CENP-N.eLife 2017;6:pii:e33442.
    16 Chittori S,Hong J,Saunders H,Feng H,Ghirlando R,Kelly AE,et al.Structural mechanisms of centromeric nucleosome recognition by the kinetochore protein CENP-N.Science 2018;359(6373):339-43.
    17 Wang H,Hu X,Ding X,Dou Z,Yang Z,Shaw AW,et al.Human Zwint-1 specifies localization of Zeste White 10 to kinetochores and is essential for mitotic checkpoint signaling.J Biol Chem2004;279(52):54590-8.
    18薛宇,刘丹,符传孩,窦震,姚雪彪.哺乳动物驱动蛋白的计算基因组学分析与鉴定.科学通报(Xue Yu,Liu Dan,Fu Chuanhai,Dou Chen,Yao Xuebiao.Chinese Science Bulletin)2006;51(14):1654-65.
    19 Dou Z,Sawagechi A,Zhang J,Luo H,Brako L,Yao XB.Dynamic distribution of TTK in HeLa cells:insights from an ultrastructural study.Cell Res 2003;13(6):443-9.
    20 Lou Y,Yao J,Zereshki A,Dou Z,Ahmed K,Wang H,et al.NEK2A interacts with MAD1 and possibly functions as a novel integrator of the spindle checkpoint signaling.J Biol Chem 2004;279(19):20049-57.
    21 Cheng Z,Ke Y,Ding X,Wang F,Wang H,Wang W,et al.Functional characterization of TIP60 sumoylation in UV-irradiated DNA damage response.Oncogene 2008;27(7):931-41.
    22 Mo F,Zhuang X,Liu X,Yao PY,Qin B,Su Z,et al.Acetylation of Aurora B by TIP60 ensures accurate chromosomal segregation.Nat Chem Biol 2016;12(4):226-32.
    23 Wu Q,Hu H,Lan J,Emenari C,Wang Z,Chang KS,et al.PML3orchestrates the nuclear dynamics and function of TIP60.J Biol Chem 2009;284(13):8747-59.
    24 Jiang K,Wang J,Liu J,Ward T,Wordeman L,Davidson A,et al.TIP150 interacts with and targets MCAK at the microtubule plus ends.EMBO Rep 2009;10(8):857-65.
    25 Zhang L,Shao H,Zhu T,Xia P,Wang Z,Liu L,et al.DDA3 associates with microtubule plus ends and orchestrates microtubule dynamics and directional cell migration.Sci Rep 2013;3:1681.
    26 Huang Y,Wang W,Yao P,Wang X,Liu X,Zhuang X,et al.CENP-E kinesin interacts with SKAP protein to orchestrate accurate chromosome segregation in mitosis.J Biol Chem 2012;287(2):1500-9.
    27 Wang X,Zhuang X,Cao D,Chu Y,Yao P,Liu W,et al.Mitotic regulator SKAP forms a link between kinetochore core complex KMN and dynamic spindle microtubules.J Biol Chem 2012;287(47):39380-90.
    28 Akram S,Yang F,Li J,Adams G,Liu Y,Zhuang X,et al.LRIF1interacts with HP1alpha to coordinate accurate chromosome segregation during mitosis.J Mol Cell Biol 2018;10(6):527-38.
    29 Cao D,Su Z,Wang W,Wu H,Liu X,Akram S,et al.Signaling scaffold protein IQGAP1 interacts with microtubule plus-end tracking protein SKAP and links dynamic microtubule plus-end to steer cell migration.J Biol Chem 2015;290(39):23766-80.
    30 Ward T,Wang M,Liu X,Wang Z,Xia P,Chu Y,et al.Regulation of a dynamic interaction between two microtubule-binding proteins,EB1 and TIP150,by the mitotic p300/CBP-associated factor(PCAF)orchestrates kinetochore microtubule plasticity and chromosome stability during mitosis.J Biol Chem 2013;288(22):15771-85.
    31 Zachos G.Cell division:TIPs for shaping Aurora B activity.Nat Chem Biol 2016;12(4):204-5.
    32 Yang Y,Yu H.Partner switching for Ran during the mitosis dance.J Mol Cell Biol 2018;10(1):89-90.
    33 Bao X,Liu H,Liu X,Ruan K,Zhang Y,Zhang Z,et al.Mitosisspecific acetylation tunes Ran effector binding for chromosome segregation.J Mol Cell Biol 2018;10(1):18-32.
    34 Zhao G,Cheng Y,Gui P,Cui M,Liu W,Wang W,et al.Dynamic acetylation of the kinetochore-associated protein HEC1 ensures accurate microtubule-kinetochore attachment.J Biol Chem 2019;294(2):576-92.
    35 Lee HS,Lin Z,Chae S,Yoo YS,Kim BG,Lee Y,et al.The chromatin remodeler RSF1 controls centromeric histone modifications to coordinate chromosome segregation.Nat Commun 2018;9(1):3848.
    36 Macurek L,Lindqvist A,Lim D,Lampson MA,Klompmaker R,Freire R,et al.Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery.Nature 2008;455(7209):119-23.
    37 Seki A,Coppinger JA,Jang CY,Yates JR,Fang G.Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry.Science 2008;320(5883):1655-8.
    38 Fang L,Seki A,Fang G.SKAP associates with kinetochores and promotes the metaphase-to-anaphase transition.Cell Cycle 2009;8(17):2819-27.
    39 Schmidt JC,Kiyomitsu T,Hori T,Backer CB,Fukagawa T,Cheeseman IM.Aurora B kinase controls the targeting of the Astrin-SKAP complex to bioriented kinetochores.J Cell Biol2010;191(2):269-80.
    40 Ciossani G,Overlack K,Petrovic A,Huis In‘t Veld PJ,Koerner C,Wohlgemuth S,et al.The kinetochore proteins CENP-E and CENP-F directly and specifically interact with distinct BUBmitotic checkpoint Ser/Thr kinases.J Biol Chem 2018;293(26):10084-101.
    41 Gassmann R,Essex A,Hu JS,Maddox PS,Motegi F,Sugimoto A,et al.A new mechanism controlling kinetochore-microtubule interactions revealed by comparison of two dynein-targeting components:SPDL-1 and the Rod/Zwilch/Zw10 complex.Genes Dev 2008;22(17):2385-99.
    42 Sacristan C,Ahmad MUD,Keller J,Fermie J,Groenewold V,Tromer E,et al.Dynamic kinetochore size regulation promotes microtubule capture and chromosome biorientation in mitosis.Nat Cell Biol 2018;20(7):800-10.
    43 Monda JK,Cheeseman IM.The kinetochore-microtubule interface at a glance.J Cell Sci 2018;131(16):pii:jcs214577.
    44 Cheeseman IM,Desai A.Molecular architecture of the kinetochore-microtubule interface.Nat Rev Mol Cell Biol 2008;9(1):33-46.
    45 Santaguida S,Musacchio A.The life and miracles of kinetochores.EMBO J 2009;28(17):2511-31.
    46 Morin X,Bellaiche Y.Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development.Dev Cell 2011;21(1):102-19.
    47 Bian M,Fu J,Yan Y,Chen Q,Yang C,Shi Q,et al.Short exposure to paclitaxel induces multipolar spindle formation and aneuploidy through promotion of acentrosomal pole assembly.Sci China.Life Sci 2010;53(11):1322-9.
    48 Clarke PR,Zhang C.Spatial and temporal coordination of mitosis by Ran GTPase.Nat Rev Mol Cell Biol 2008;9(6):464-77.
    49 Wu Z,Jiang Q,Clarke PR,Zhang C.Phosphorylation of Crm1by CDK1-cyclin-B promotes Ran-dependent mitotic spindle assembly.J Cell Sci 2013;126(Pt 15):3417-28.
    50 Qi R,Xu N,Wang G,Ren H,Li S,Lei J,et al.The lamin-A/C-LAP2alpha-BAF1 protein complex regulates mitotic spindle assembly and positioning.J Cell Sci 2015;128(15):2830-41.
    51 Fu J,Bian M,Xin G,Deng Z,Luo J,Guo X,et al.TPX2phosphorylation maintains metaphase spindle length by regulating microtubule flux.J Cell Biol 2015;210(3):373-83.
    52 Wu Q,He R,Zhou H,Yu AC,Zhang B,Teng J,et al.Cep57,a NEDD1-binding pericentriolar material component,is essential for spindle pole integrity.Cell Res 2012;22(9):1390-401.
    53 He R,Wu Q,Zhou H,Huang N,Chen J,Teng J.Cep57 protein is required for cytokinesis by facilitating central spindle microtubule organization.J Biol Chem 2013;288(20):14384-90.
    54 Zhou H,Wang T,Zheng T,Teng J,Chen J.Cep57 is a Mis12-interacting kinetochore protein involved in kinetochore targeting of Mad1-Mad2.Nat Commun 2016;7:10151.
    55 Kotak S,Busso C,Gonczy P.NuMA phosphorylation by CDK1couples mitotic progression with cortical dynein function.EMBOJ 2013;32(18):2517-29.
    56 Jiang H,He X,Wang S,Jia J,Wan Y,Wang Y,et al.Amicrotubule-associated zinc finger protein,BuGZ,regulates mitotic chromosome alignment by ensuring Bub3 stability and kinetochore targeting.Dev Cell 2014;28(3):268-81.
    57 Jiang H,Wang S,Huang Y,He X,Cui H,Zhu X,et al.Phase transition of spindle-associated protein regulate spindle apparatus assembly.Cell 2015;163(1):108-22.
    58 Yang Y,Yan X,Cai Y,Lu Y,Si J,Zhou T.NudC-like protein 2 regulates the LIS1/dynein pathway by stabilizing LIS1 with Hsp90.Proc Natl Acad Sci USA 2010;107(8):3499-504.
    59 Yang Y,Liu M,Li D,Ran J,Gao J,Suo S,et al.CYLD regulates spindle orientation by stabilizing astral microtubules and promoting dishevelled-NuMA-dynein/dynactin complex formation.Proc Natl Acad Sci USA 2014;111(6):2158-63.
    60 Kiyomitsu T,Cheeseman IM.Chromosome-and spindle-polederived signals generate an intrinsic code for spindle position and orientation.Nat Cell Biol 2012;14:311-7.
    61 Kiyomitsu T,Cheeseman IM.Cortical dynein and asymmetric membrane elongation coordinately position the spindle in anaphase.Cell 2013;154(2):391-402.
    62 Rodrigues NT,Lekomtsev S,Jananji S,Kriston-Vizi J,Hickson GR,Baum B.Kinetochore-localized PP1-Sds22 couples chromosome segregation to polar relaxation.Nature 2015;524(7566):489-92.
    63 Feng Z,Caballe A,Wainman A,Johnson S,Haensele AFM,Cottee MA,et al.Structural basis for mitotic centrosome assembly in flies.Cell 2017;169(6):1078-89.e13.
    64 Woodruff JB,Ferreira Gomes B,Widlund PO,Mahamid J,Honigmann A,Hyman AA.The Centrosome Is a Selective Condensate that Nucleates Microtubules by Concentrating Tubulin.Cell2017;169(6):1066-77.e10.
    65 Akhmanova A,Steinmetz MO.Tracking the ends:a dynamic protein network controls the fate of microtubule tips.Nat Rev Mol Cell Biol 2008;9(4):309-22.
    66 Xia P,Wang Z,Liu X,Wu B,Wang J,Ward T,et al.EB1 acetylation by P300/CBP-associated factor(PCAF)ensures accurate kinetochore-microtubule interactions in mitosis.Proc Natl Acad Sci USA 2012;109(41):16564-9.
    67 Xie S,Yang Y,Lin X,Zhou J,Li D,Liu M.Characterization of a novel EB1 acetylation site important for the regulation of microtubule dynamics and cargo recruitment.J Cell Physiol2018;233(3):2581-9.
    68 Luo Y,Ran J,Xie S,Yang Y,Chen J,Li S,et al.ASK1 controls spindle orientation and positioning by phosphorylating EB1 and stabilizing astral microtubules.Cell Discov 2016;2:16033.
    69 Mann BJ,Wadsworth P.Kinesin-5 Regulation and Function in Mitosis.Trends Cell Biol 2019;29(1):66-79.
    70 Ji Z,Gao H,Jia L,Li B,Yu H.A sequential multi-target Mps1phosphorylation cascade promotes spindle checkpoint signaling.eLife 2017;doi:10.7554/eLife.22513.
    71 Fournier M,Orpinell M,Grauffel C,Scheer E,Garnier JM,Ye T,et al.KAT2A/KAT2B-targeted acetylome reveals a role for PLK4 acetylation in preventing centrosome amplification.Nat Commun 2016;7:13227.
    72 Chu Y,Yao PY,Wang W,Wang D,Wang Z,Zhang L,et al.Aurora B kinase activation requires survivin priming phosphorylation by PLK1.J Mol Cell Biol 2011;3(4):260-7.
    73 Xue Y,Ren J,Gao X,Jin C,Wen L,Yao X.GPS 2.0,a tool to predict kinase-specific phosphorylation sites in hierarchy.Mol Cell Proteomics 2008;7(9):1598-608.
    74 Tsien RY.The green fluorescent protein.Annu Rev Biochem1998;67:509-44.
    75 Patterson GH,Lippincott-Schwartz J.A photoactivatable GFPfor selective photolabeling of proteins and cells.Science 2002;297(5588):1873-7.
    76 Betzig E,Patterson GH,Sougrat R,Lindwasser OW,Olenych S,Bonifacino JS,et al.Imaging intracellular fluorescent proteins at nanometer resolution.Science 2006;313(5793):1642-5.
    77 Xia P,Liu X,Wu B,Zhang S,Song X,Yao PY,et al.Superresolution imaging reveals structural features of EB1 in microtubule plus-end tracking.Mol Biol Cell 2014;25(25):4166-73.
    78 Liu Z,Xing D,Su QP,Zhu Y,Zhang J,Kong X,et al.Superresolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space.Nat Commun 2014;5:4443.
    79 Nickerson A,Huang T,Lin LJ,Nan X.Photoactivated localization microscopy with bimolecular fluorescence complementation(BiFC-PALM)for nanoscale imaging of protein-protein interactions in cells.PLoS One 2014;9(6):e100589.
    80 Chu L,Zhu T,Liu X,Yu R,Bacanamwo M,Dou Z,et al.SU-V39H1 orchestrates temporal dynamics of centromeric methylation essential for faithful chromosome segregation in mitosis.JMol Cell Biol 2012;4(5):331-40.
    81 McKinley KL,Stuurman N,Royer LA,Schartner C,CastilloAzofeifa D,Delling M,et al.Cellular aspect ratio and cell division mechanics underlie the patterning of cell progeny in diverse mammalian epithelia.eLife 2018;7:pii:e36739.
    82 Knouse KA,Lopez KE,Bachofner M,Amon A.Chromosome Segregation Fidelity in Epithelia Requires Tissue Architecture.Cell 2018;175(1):200-11.e13.
    83 Yao X,Smolka A.Cellular dynamics underlying gastric parietal cell physiology and microbial-induced pathobiology.Gastroenterology 2019;doi:10.1053/j.gastro.2019.02.036.
    84 Ding X,Yan F,Yao P,Yang Z,Wan W,Wang X,et al.Probing CENP-E function in chromosome dynamics using small molecule inhibitor syntelin.Cell Res 2010;20(12):1386-9.
    85 Valm AM,Cohen S,Legant WR,Melunis J,Hershberg U,Wait E,et al.Applying systems-level spectral imaging and analysis to reveal the organelle interactome.Nature 2017;546(7656):162-7.
    86 Guo Y,Li D,Zhang S,Yang Y,Liu JJ,Wang X,et al.Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales.Cell 2018;175(5):1430-42.e17.