Improved corrosion resistance of Mg alloy AZ31B induced by selective evaporation of Mg using large pulsed electron beam irradiation
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Improved corrosion resistance of Mg alloy AZ31B induced by selective evaporation of Mg using large pulsed electron beam irradiation
  • 作者:Woo ; Jin ; Lee ; Jisoo ; Kim ; Hyung ; Wook ; Park
  • 英文作者:Woo Jin Lee;Jisoo Kim;Hyung Wook Park;Department of Mechanical, Aerospace, and Nuclear Engineering, Ulsan National Institute of Science and Technology;
  • 英文关键词:Magnesium alloys;;Electron beam treatment;;Corrosion resistance;;Microstructure Rapid re-solidification;;Wear resistance
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:Department of Mechanical, Aerospace, and Nuclear Engineering, Ulsan National Institute of Science and Technology;
  • 出版日期:2019-05-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:supported financially by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (Nos. 2018R1A2B3007806 and 2017R1A5A1015311);; the Development of High Power Density Electron Beam Micro-drilling Machine and Process for High Aspect-ratio Micro-hole Parts funded by Ministry of Trade, Industry and Energy (No. 10063367)
  • 语种:英文;
  • 页:CLKJ201905023
  • 页数:11
  • CN:05
  • ISSN:21-1315/TG
  • 分类号:191-201
摘要
Large pulsed electron beam(LPEB) irradiation was employed as a surface treatment of magnesium(Mg)alloy AZ31B to enhance its corrosion and wear resistance. Selective evaporation of Mg induced by LPEB irradiation at an energy density of 5 J/cm~2 for 40 cycles has led to the formation of an Al-enriched resolidified layer with nano-grained structure consisting of Mg_(3.1) Al_(0.9) metastable phase. The formation of such a re-solidified layer after LPEB irradiation has enabled a decrease in corrosion rate of Mg alloy AZ31B in 3.5% NaCl solution. Different equivalent electrical circuit models were proposed to account for the corrosion behavior of untreated Mg alloy AZ31B and those subjected to LPEB irradiation. A decrease in wear depth when compared to that of the untreated alloy suggests an increase in wear resistance of LPEB-irradiated Mg alloy AZ31B. Adhesive wear is the predominant mechanism of untreated Mg alloy AZ31B while abrasive wear mechanism dominates for LPEB-irradiated Mg alloy AZ31B.
        Large pulsed electron beam(LPEB) irradiation was employed as a surface treatment of magnesium(Mg)alloy AZ31B to enhance its corrosion and wear resistance. Selective evaporation of Mg induced by LPEB irradiation at an energy density of 5 J/cm~2 for 40 cycles has led to the formation of an Al-enriched resolidified layer with nano-grained structure consisting of Mg_(3.1) Al_(0.9) metastable phase. The formation of such a re-solidified layer after LPEB irradiation has enabled a decrease in corrosion rate of Mg alloy AZ31B in 3.5% NaCl solution. Different equivalent electrical circuit models were proposed to account for the corrosion behavior of untreated Mg alloy AZ31B and those subjected to LPEB irradiation. A decrease in wear depth when compared to that of the untreated alloy suggests an increase in wear resistance of LPEB-irradiated Mg alloy AZ31B. Adhesive wear is the predominant mechanism of untreated Mg alloy AZ31B while abrasive wear mechanism dominates for LPEB-irradiated Mg alloy AZ31B.
引文
[1]M.Weller,T.Overton,J.Rourke,F.Armstrong,Inorganic Chemistry,sixth ed.,Oxford University Press,Oxford,2014.
    [2]N.Li,Y.Zheng,J.Mater.Sci.Technol.29(2013)489-502.
    [3]C.Castellani,R.A.Lindtner,P.Hausbrandt,E.Tschegg,S.E.Stanzl-Tschegg,G.Zanoni,S.Beck,A.M.Weinberg,Acta Biomater.7(2011)432-440.
    [4]W.Yingjun,J.Mater.Sci.Technol.32(2016)801-809.
    [5]W.Tegart,in:W.Tegart(Ed.),The Electrolytic and Chemical Polishing of Metals,Pergamon Press,London,1959,pp.96-101.
    [6]B.Denkena,A.Lucas,Manuf.Technnol.56(2007)113-116.
    [7]W.G.Jiru,M.R.Sankar,U.S.Dixit,J.Mater.Eng.Perform.25(2016)1172-1181.
    [8]T.Toko,M.Ohno,K.Matsuura,J.Mater.Sci.Technol.34(2018)1119-1126.
    [9]R.Arrabal,B.Mingo,A.Pardo,E.Matykina,M.Mohedano,M.Merino,A.Rivas,A.Maroto,Corros.Sci.97(2015)38-48.
    [10]W.Jin,G.Wu,H.Feng,W.Wang,X.Zhang,P.K.Chu,Corros.Sci.94(2015)142-155.
    [11]Z.Xie,Z.Luo,Q.Yang,T.Chen,S.Tan,Y.Wang,Y.Luo,Vacuum 101(2014)171-176.
    [12]X.W.Tao,Z.Z.Wang,X.B.Zhang,Z.X.Ba,Y.M.Wang,Surf.Rev.Lett.21(2014)1450085.
    [13]R.K.Gupta,K.Mensah-Darkwa,K.Dhananjay,J.Mater.Sci.Technol.29(2013)180-186.
    [14]Z.Li,A.Luo,Q.Wang,L.Peng,P.Fu,G.Wu,Mater.Sci.Eng.A 564(2013)450-460.
    [15]Z.Li,Q.Wang,A.A.Luo,J.Dai,H.Zou,L.Peng,J.Mater.Sci.Technol.34(2018)2091-2099.
    [16]X.Dong,in:A.Y.C.Nee(Ed.),Handbook of Manufacturing Engineering and Technology,Springer,Singapore,2013,pp.1-21.
    [17]G.L.Song,Z.Shi,Corros.Sci.85(2014)126-140.
    [18]Y.Zhang,S.Tang,J.Hu,T.Lin,Corros.Sci.111(2016)334-343.
    [19]Y.Mori,A.Koshi,J.Liao,Corros.Sci.104(2016)207-216.
    [20]D.V.Mashtalyar,S.V.Gnedenkov,S.L.Sinebryukhov,I.M.Imshinetskiy,J.Mater.Sci.Technol.33(2017)461-468.
    [21]S.Yagi,K.Kuwabara,Y.Fukuta,K.Kubota,E.Matsubara,Corros.Sci.73(2013)188-195.
    [22]Y.Wang,D.Wei,J.Yu,S.Di,J.Mater.Sci.Technol.30(2014)984-990.
    [23]B.Mingo,R.Arrabal,M.Mohedano,A.Pardo,E.Matykina,Surf.Coat.Technol.309(2017)1023-1032.
    [24]J.Gray,B.Luan,J.Alloys Compd.336(2002)88-113.
    [25]D.H?che,C.Blawert,M.Cavellier,D.Busardo,T.Gloriant,Appl.Surf.Sci.257(2011)5626-5633.
    [26]J.Medved,P.Mrvar,M.Vonˇcina,Oxid.Met.71(2009)257-270.
    [27]M.Delgado,F.García-Galvan,I.Llorente,P.Pérez,P.Adeva,S.Feliu,Corros.Sci.123(2017)182-196.
    [28]M.O.Pekguleryuz,K.Kainer,A.A.Kaya,Fundamentals of Magnesium Alloy Metallurgy,First ed.,Woodhead Publishing Limited,Oxford,2013.
    [29]A.Singh,S.P.Harimkar,JOM 64(2012)716-733.
    [30]J.Zhou,J.Xu,S.Huang,Z.Hu,X.Meng,X.Feng,Surf.Coat.Technol.309(2017)212-219.
    [31]A.Okada,Y.Uno,J.McGeough,K.Fujiwara,K.Doi,K.Uemura,S.Sano,Manuf.Technol.57(2008)223-226.
    [32]J.Kim,W.J.Lee,H.W.Park,Int.J.Precis.Eng.Manuf.17(2016)1575-1585.
    [33]J.Kim,S.S.Park,H.W.Park,Corros.Sci.89(2014)179-188.
    [34]G.Bo,H.Yi,Z.Wenfeng,T.Ganfeng,in:W.A.Monteiro(Ed.),Special Issues on Magnesium Alloys,InTech,Rijeka,2011,pp.25-40.
    [35]M.Li,S.Hao,H.Wen,R.Huang,Appl.Surf.Sci.303(2014)350-353.
    [36]S.Hao,M.Li,Nucl.Instrum.Methods Phys.Res.B 375(2016)1-4.
    [37]K.Zhang,J.Zou,T.Grosdidier,C.Dong,J.Vac.Sci.Technol.A 27(2009)1217-1226.
    [38]J.Kim,H.W.Park,Corros.Sci.90(2015)153-160.
    [39]M.Kaya,Mater.Manuf.Process.27(2012)605-608.
    [40]C.Vasilescu,S.Drob,E.Neacsu,J.M.Rosca,Corros.Sci.65(2012)431-440.
    [41]J.Rios,J.Calderón,R.Nogueira,J.Brazil.Chem.Soc.22(2011)1362-1370.
    [42]M.E.Orazem,B.Tribollet,Electrochemical Impedance Spectroscopy,First ed.,John Wiley&Sons Inc,New Jersey,2011.
    [43]Y.Li,T.Zhang,F.H.Wang,Electrochim.Acta 51(2006)2845-2850.
    [44]A.Pardo,M.C.Merino,A.E.Coy,F.Viejo,R.Arrabal,S.Feliu Jr,Electrochim.Acta 53(2008)7890-7902.
    [45]A.Pardo,M.C.Merino,A.E.Coy,R.Arrabal,F.Viejo,E.Matykina,Corros.Sci.50(2008)823-834.
    [46]G.B.Hamu,D.Eliezer,L.Wagner,J.Alloys Compd.468(2009)222-229.
    [47]P.Li,M.K.Lei,X.P.Zhu,Mater.Charact.62(2011)599-605.
    [48]M.Esmaily,J.E.Svensson,S.Fajardo,N.Birbilis,G.S.Frankel,S.Virtanen,R.Arrabal,S.Thomas,L.G.Johansson,Prog.Mater.Sci.89(2017)92-193.
    [49]J.Kim,W.J.Lee,H.W.Park,J.Alloys Compd.679(2016)138-144.