Optimizing mechanical property and cytocompatibility of the biodegradable Mg-Zn-Y-Nd alloy by hot extrusion and heat treatment
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimizing mechanical property and cytocompatibility of the biodegradable Mg-Zn-Y-Nd alloy by hot extrusion and heat treatment
  • 作者:Yiyuan ; Kang ; Beining ; Du ; Yueming ; Li ; Baojie ; Wang ; Liyuan ; Sheng ; Longquan ; Shao ; Yufeng ; Zheng ; Tingfei ; Xi
  • 英文作者:Yiyuan Kang;Beining Du;Yueming Li;Baojie Wang;Liyuan Sheng;Longquan Shao;Yufeng Zheng;Tingfei Xi;Shenzhen Institute, Peking University;Nanfang Hospital, Southern Medical University;Institute of Metal Research, Chinese Academy of Sciences;
  • 英文关键词:Mg-Zn-Y-Nd alloy;;Microstructure;;Mechanical property;;Biodegradable behavior;;Biocompatibility
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:Shenzhen Institute, Peking University;Nanfang Hospital, Southern Medical University;Institute of Metal Research, Chinese Academy of Sciences;
  • 出版日期:2019-01-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:the National Key Research and Development Program of China(No.2016YFC1102601);; the Shenzhen Basic Research Project(JCYJ20170306141749970),the Shenzhen Basic Research Project(Nos.JCYJ2015052916222873,JCYJ20160407090231002,JCYJ20150625155931806 and JCYJ20160427100211076) for financial support;; the Shenzhen Technology Innovation Plan(Nos.CXZZ20140731091722497 and CXZZ20140419114548507)
  • 语种:英文;
  • 页:CLKJ201901002
  • 页数:13
  • CN:01
  • ISSN:21-1315/TG
  • 分类号:8-20
摘要
The Mg-Zn-Y-Nd alloy is a new type of degradable material for biomedical application. In the present study, Mg-6Zn-1.2Y-0.8Nd alloy was fabricated, and then extrusion and heat treatment were conducted to optimize its mechanical properties and cytocompatibility. The microstructure observation, mechanical property, degradation behavior and cytocompatibility tests were conducted on the Mg-Zn-Y-Nd alloy with three different states: as-cast(alloy C), as-extruded(alloy E) and extruded + heat treated(alloy EH).The results show that alloy C consists of coarse grains and continuous secondary phases. The extrusion process has caused incomplete recrystallization, and results in a mixed grain structure of elongated grains and small equiaxed grains(alloy E). The heat treatment process has promoted the recrystallization and homogenized the grain structure(alloy EH). Both the strength and ductility of the alloy has been improved by extrusion, but the following heat treatment has decreased the strength and increased the ductility.The degradation behavior of the alloy C and E alloys does not show much difference, but improves slightly in alloy EH, because the heat treatment has homogenized the microstructure and released the residual stress in the alloy. The directly and indirectly cell viability tests indicate that alloy EH exhibits the best cytocompatibility, which should be ascribed to its relative uniform degradation and low ion releasing rate. In summary, the combination of hot extrusion and heat treatment could optimize the mechanical property and cytocompatibility of the Mg-Zn-Y-Nd alloy together, which is beneficial for the future application of the alloy.
        The Mg-Zn-Y-Nd alloy is a new type of degradable material for biomedical application. In the present study, Mg-6Zn-1.2Y-0.8Nd alloy was fabricated, and then extrusion and heat treatment were conducted to optimize its mechanical properties and cytocompatibility. The microstructure observation, mechanical property, degradation behavior and cytocompatibility tests were conducted on the Mg-Zn-Y-Nd alloy with three different states: as-cast(alloy C), as-extruded(alloy E) and extruded + heat treated(alloy EH).The results show that alloy C consists of coarse grains and continuous secondary phases. The extrusion process has caused incomplete recrystallization, and results in a mixed grain structure of elongated grains and small equiaxed grains(alloy E). The heat treatment process has promoted the recrystallization and homogenized the grain structure(alloy EH). Both the strength and ductility of the alloy has been improved by extrusion, but the following heat treatment has decreased the strength and increased the ductility.The degradation behavior of the alloy C and E alloys does not show much difference, but improves slightly in alloy EH, because the heat treatment has homogenized the microstructure and released the residual stress in the alloy. The directly and indirectly cell viability tests indicate that alloy EH exhibits the best cytocompatibility, which should be ascribed to its relative uniform degradation and low ion releasing rate. In summary, the combination of hot extrusion and heat treatment could optimize the mechanical property and cytocompatibility of the Mg-Zn-Y-Nd alloy together, which is beneficial for the future application of the alloy.
引文
[1]M.P.Staiger,A.M.Pietak,J.Huadmai,G.Dias,Biomaterials 27(2006)1728-1734.
    [2]F.Witte,N.Hort,C.Vogt,S.Cohen,K.U.Kainer,R.Willumeit,Curr.Opin.Solid State Mat.Sci.12(2008)63-72.
    [3]Y.F.Zheng,X.N.Gu,F.Witte,Mater.Sci.Eng.R 77(2014)1-34.
    [4]H.Hermawan,D.Dube,D.Mantovani,Acta Biomater.6(2010)1693-1697.
    [5]A.F.Cipriano,A.Sallee,M.Tayoba,M.C.Cortez,A.Lin,R.G.Guan,Acta Biomater.48(2016)499.
    [6]Y.Chen,Z.Xu,C.Smith,J.Sankar,Acta Biomater.10(10)(2014)4561-4573.
    [7]G.Mani,M.D.Feldman,D.Patel,C.M.Agrawal,Biomaterials 28(2007)1689-1710.
    [8]R.Zeng,W.Dietzel,F.Witte,N.Hort,C.Blawert,Adv.Eng.Mater.10(2008)B3-B14.
    [9]M.Shechter,M.Sharir,M.J.Labrador,J.Forrester,B.Silver,C.N.Bairey Merz,Circulation 102(2000)2353-2358.
    [10]K.H.Polderman,A.R.H.V.Zanten,A.R.J.Girbes,Intens.Care Med.29(2003)1202-1203.
    [11]W.R.Zhou,Y.F.Zheng,M.A.Leeflang,J.Zhou,Acta Biomater.9(2013)8488-8498.
    [12]J.Wang,L.Wang,S.Guan,S.Zhu,C.Ren,S.Hou,J.Mater.Sci.Mater.M 21(2010)2001-2008.
    [13]Z.Li,M.Chen,W.Li,H.Zheng,Y.Chen,D.Liu,F.Jin,J.Alloys Compd.702(2017)290-302.
    [14]L.Hou,Z.Li,H.Zhao,Y.Pan,S.Pavlinich,X.Liu,X.Li,Y.Zheng,L.Li,J.Mater.Sci.Technol.32(2016)874-882.
    [15]B.Zberg,P.J.Uggowitzer,J.F.L?ffler,Nat.Mater.8(2009)887-891.
    [16]S.Zhang,X.Zhang,C.Zhao,J.Li,Y.Song,C.Xie,H.Tao,Y.Zhang,Y.He,Y.Bian,Acta Biomater.6(2010)626.
    [17]H.Qin,Y.Zhao,Z.An,M.Cheng,Q.Wang,T.Cheng,Q.Wang,J.Wang,Y.Jiang,X.Zhang,G.Yuan,Biomaterials 53(2015)211.
    [18]L.Xu,G.Yu,E.Zhang,F.Pan,K.Yang,J.Biomed.Mater.Res.A 83(2007)703-711.
    [19]H.X.Wang,S.K.Guan,X.Wang,C.X.Ren,L.G.Wang,Acta Biomater.6(2010)1743-1748.
    [20]X.Zhao,L.L.Shi,J.Xu,Mater.Sci.Eng.C 33(2013)3627.
    [21]Y.Zhang,X.Huang,Z.Ma,Y.Li,F.Guo,J.Yang,Y.Ma,Y.Hao,Mater.Sci.Eng.A31(2016)3542-3549.
    [22]D.K.Xu,W.N.Tang,L.Liu,Y.B.Xu,E.H.Han,J.Alloys Compd.432(2007)129-134.
    [23]Q.Peng,N.Ma,D.Fang,H.Li,R.Liu,Y.Tian,J.Mech,Behav.Biomed.17(2013)176-185.
    [24]X.Zeng,Y.Zhang,C.Lu,W.Ding,Y.Wang,Y.Zhu,J.Alloys Compd.395(2005)213-219.
    [25]A.Drynda,N.Deinet,N.Braun,M.Peuster,J.Biomed.Mater.Res.A 91(2009)360.
    [26]Y.L.Ju,D.H.Kim,H.K.Lim,D.H.Kim,Mater.Lett.59(2005)3801-3805.
    [27]J.Wang,R.Liu,X.Dong,Y.Yang,J.Rare Earths 31(2013)616-621.
    [28]X.Xu,X.Chen,W.Du,Y.Geng,F.Pan,J.Mater.Sci.Technol.9(2017)926-934.
    [29]L.Jing,Z.Bo,W.Pei,X.Wang,B.Zhang,Q.Shi,T.Xi,M.Chen,S.Guan,Acs.Appl.Mater.Inter.8(2016)17842-17858.
    [30]J.Liu,P.Wang,C.Chu,T.Xi,J.Mater.Chem.B 5(2017)1787-1802.
    [31]H.R.Bakhsheshi-Rad,M.H.Idris,M.R.Abdul-Kadir,A.Ourdjini,M.Medraj,M.Daroonparvar,E.Hamzah,Mater.Des.53(2014)283-292.
    [32]Q.Ge,E.Mostaed,C.Zanella,Z.Yu,M.Vedani,Rare Metal.Mater.Eng.43(2014)2561-2566.
    [33]S.J.Zhu,Q.Liu,Y.F.Qian,B.Sun,L.G.Wang,J.M.Wu,S.K.Shao,Front.Mater.Sci.8(2014)256-263.
    [34]X.B.Zhang,Y.J.Xue,Z.Z.Wang,Trans.Nonferr.Metal.Soc.22(2012)2343-2350.
    [35]X.Xia,W.Zhao,X.Feng,H.Feng,X.Zhang,Mater.Des.49(2013)19-24.
    [36]E.Cor,Standard Practice for Laboratory Immersion Corrosion Testing of Metals 1,2004.
    [37]L.Y.Sheng,F.Yang,T.F.Xi,J.T.Guo,H.Q.Ye,Mater.Sci.Eng.A 555(2012)131-138.
    [38]L.Y.Sheng,F.Yang,J.T.Guo,T.F.Xi,H.Q.Ye,Compos.Part B-Eng.45(2013)785-791.
    [39]L.Y.Sheng,F.Yang,T.F.Xi,C.Lai,H.Q.Ye,Compos.Part B-Eng.42(2011)1468-1473.
    [40]R.W.Cahn,J.Mater.Sci.Technol.19(2003)53-54.
    [41]B.L.Mordike,T.Ebert,Mater.Sci.Eng.A 302(2001)37-45.
    [42]J.Gr?bner,A.Kozlov,X.Y.Fang,J.Geng,J.F.Nie,R.Schmid-Fetzera,Acta Mater.60(2012)5948-5962.
    [43]L.Sheng,L.Wang,T.Xi,Y.Zheng,H.Ye,Mater.Des.32(2011)4810-4817.
    [44]X.Zhang,Z.Wang,G.Yuan,Y.Xue,Mater.Sci.Eng.B 177(2012)113-119.
    [45]W.Zhang,K.Du,X.Chen,L.Sheng,H.Ye,Philos.Mag.96(2016)58-70.
    [46]L.Ma,R.K.Mishra,L.Peng,A.A.Luo,W.Ding,A.K.Sachdev,Mater.Sci.Eng.A529(2011)151-155.
    [47]X.Zhang,G.Yuan,L.Mao,J.Niu,P.Fu,W.Ding,J.Mech,Behav.Biomed.7(2012)77.
    [48]X.N.Gu,S.S.Li,X.M.Li,Y.B.Fan,Front.Mater.Sci.8(2014)200-218.
    [49]Y.Song,D.Shan,R.Chen,E.H.Han,Corros.Sci.52(2010)1830-1837.
    [50]T.Hosaka,S.Yoshihara,I.Amanina,B.J.Macdonald,Proc.Eng.184(2017)432-441.
    [51]S.K.Parks,J.Chiche,J.Pouyssegur,J.Cell.Physiol.226(2011)299-308.
    [52]M.A.Khajah,I.Almohri,P.M.Mathew,Y.A.Luqmani,Plos One 8(2013)e76327.
    [53]T.Y.Nguyen,C.G.Liew,H.Liu,Plos One 8(2013)e76547.
    [54]A.Tomita,M.Zhang,F.Jin,W.Zhuang,H.Takeda,T.Maruyama,M.Osawa,K.I.Hashimoto,H.Kawasaki,K.Ito,N.Dohmae,R.Ishitani,I.Shimada,Z.Yan,M.Hattori,O.Nureki,Nat.Commun.8(2017)148.
    [55]M.R.Khaksar,M.Rahimifard,M.Baeeri,F.Maqbool,M.Navaei-Nigjeh,S.Hassani,S.Moeini-Nodeh,A.Kebriaeezadeh,M.Abdollahi,J.Trace.Elem.Med.Biol.41(2017)79-90.
    [56]W.Guo,Y.B.Zou,Y.G.Jiang,R.W.Wang,Y.P.Zhao,Z.Ma,Tumour.Biol.32(2011)801-808.
    [57]C.Klein,K.Creach,V.Irintcheva,K.J.Hughes,P.L.Blackwell,J.A.Corbett,J.J.Baldassare,Apoptosis 11(2006)1933-1944.
    [58]J.C.Fanzo,S.K.Reaves,L.Cui,L.Zhu,J.Y.Wu,Y.R.Wang,K.Y.Lei,Am.J.Physiol.Cell.Physiol.281(2001)751-757.
    [59]X.Gu,Y.Zheng,Y.Cheng,S.Zhong,T.Xi,Biomaterials 30(2009)484-498.