摩擦加载式电液负载模拟器力矩加载实验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Torque tracking experiment of a friction based electro-hydraulic load simulator
  • 作者:郑大可 ; 许宏光
  • 英文作者:ZHENG Dake;XU Hongguang;School of Mechatronics Engineering,Harbin Institute of Technology;
  • 关键词:电液负载模拟器 ; 摩擦加载 ; 小幅值加载 ; 多余力矩 ; PID ; 前馈
  • 英文关键词:electro-hydraulic load simulator;;friction based loading;;small amplitude loading;;extra torque;;PID;;feed-forward
  • 中文刊名:HEBX
  • 英文刊名:Journal of Harbin Institute of Technology
  • 机构:哈尔滨工业大学机电工程学院;
  • 出版日期:2016-12-30 11:13
  • 出版单位:哈尔滨工业大学学报
  • 年:2017
  • 期:v.49
  • 语种:中文;
  • 页:HEBX201701009
  • 页数:6
  • CN:01
  • ISSN:23-1235/T
  • 分类号:72-77
摘要
为研究加载结构对摩擦加载式电液负载模拟器力矩加载性能的影响,介绍该负载模拟器的加载原理,搭建单向摩擦加载式电液负载模拟器实验样机.建立该负载模拟器的线性数学模型;设计PID+前馈的控制器,在提高控制精度同时避免引入多余力矩抑制补偿;实验研究弹簧刚度、摩擦盘摩擦性能等对力矩加载性能的影响;着重研究该负载模拟器在强舵机干扰条件下的小幅值力矩加载性能.实验结果表明:摩擦加载式力矩加载方法在结构上不存在多余力矩,能够获得高性能的力矩加载结果.优化弹簧刚度,选用摩擦性能优良的摩擦盘材料,以及设计高性能的控制器均可以提高力矩加载性能.
        To study the impact of mechanical structure on the torque loading performance of a friction based electrohydraulic load simulator,the loading principle of the proposed load simulator is described,and a prototype of oneway load simulator is built. The linear mathematical model of the proposed load simulator is established,and a PID plus feed-forward controller is designed to improve precision of the torque tracking control without any extra torque compensation. The impacts of the spring stiffness,the frictional performance of the friction discs,etc on the torque loading performance are studied experimentally. Then,the experimental studies are focused on the small amplitude torque loading performance of the proposed load simulator with severe disturbance of the steering engine. The experimental results show that the friction based torque loading method has no structural extra torque,and can achieve high torque loading performance. Besides,to further improve the torque loading performance,the stiffness of the spring should be optimized,the friction disc material with excellent friction properties is needed and the high performance controller should be designed.
引文
[1]郝经佳.电液负载仿真台综合性能的研究[D].哈尔滨:哈尔滨工业大学,2001.HAO Jingjia.Comprehensive performance research of a electrohydraulic load simulator[D].Harbin:Harbin Institute of Technology,2001.
    [2]BASIC G.Hardware-in-the-loop simulation of mechanical loads for mechatronics system design[D].Ottawa:University of Ottawa,2003.
    [3]BASIC M.On hardware-in-the-loop simulation[C]//Proceedings of the 44th IEEE Conference on Decision and Control,and the European Control Conference.Seville:IEEE press,2005:3194-3198.DOI:10.1109/CDC.2005.1582653.
    [4]张彪.电液负载模拟器多余力矩抑制及其反步自适应控制研究[D].哈尔滨:哈尔滨工业大学,2009.ZHANG Biao.Extra torque rejection and adaptive backstepping control of electro hydraulic load simulator[D].Harbin:Harbin Institute of Technology,2009.
    [5]王经甫,叶正茂,李洪人.双阀并联控制在船舶舵机电液负载模拟器多余力抑制中的研究[J].机械工程学报,2005,41(4):229-233.WANG Jingfu,YE Zhengmao,LI Hongren.Study on eliminating the superfluous force of marine electrohydraulic load simulator applied with dual-valve parallel connected control[J].Chinese Journal of Mechanical Engineering,2005,41(4):229-233.
    [6]张彪,赵克定,李阁强.双阀控制电液被动施力系统的研究[J].液压与气动,2007(12):30-33.ZHANG Biao,ZHAO Keding,LI Geqiang.Study of double servovalve controlled electro-hydraulic passive load system[J].Chinese Hydraulics and Pneumatics,2007(12):30-33.DOI:1000-4858(2007)12-0030-04.
    [7]CUI J M,ZHANG B,DONG Y L.A study on performance of electro-hydraulic load simulator based on pressure servo valve[C]//Proceedings of 2015 International Conference on Fluid Power and Mechatronics.Harbin:IEEE press,2015:505-509.DOI:10.1109/FP M.2015.7337170.
    [8]苏东海,吴盛林,付兴武,等.利用基于同步补偿的角速度差值克服多余力矩[J].哈尔滨工业大学学报,2000,32(1):78-81.SU Donghai,WU Shenglin,FU Xingwu,et al.Eliminating disturbance torque by angular velocity difference based on synchro-compensation[J].Journal of Harbin Institute of Technology,2000,32(1):78-81.
    [9]张彪,赵克定.基于反步控制的被动力伺服系统的全状态反馈控制[J].西安交通大学学报,2008,42(1):82-86.DOI:0253-987X(2008)01-0082-05.ZHANG Biao,ZHAO Keding.Total state feedback control on passive force control system based on backstepping theory[J].Journal of Xi’an Jiaotong University,2008,42(1):82-86.DOI:0253-987X(2008)01-0082-05.
    [10]TRUONG D Q,AHN K K.Force control for hydraulic load simulator using self-tuning grey predictor-fuzzy PID[J].Mechatronics,2009,19(2):233-246.DOI:10.1016/j.mechatronics.2008.07.007.
    [11]李阁强,赵克定,袁锐波,等.μ理论在电液负载模拟器中的应用[J].航空学报,2007,28(1):228-233.LI Geqiang,ZHAO Keding,YUAN Ruibo,et al.Application ofμtheory in electrohydraulic load simulator[J].Acta Aeronautica et Astronautica Sinica,2007,19(2):233-246.DOI:1000-6893(2007)01-0228-06.
    [12]LI G Q,YANG H Y,LI S C,et al.Research on decoupling control for electro-hydraulic load simulator[C]//Proceedings of the 2012International Conference on Advanced Mechatronic Systems.Tokyo:IEEE press,2012:18-21.
    [13]YOONSU N.QFT force loop design for the aerodynamic load simulator[J].IEEE Transactions on Aerospace and Electronic Systems,2001,37(4):1384-1392.DOI:10.1109/7.976973.
    [14]MERRITT H E.Hydraulic control systems[M].New York:John Wiley&Sons Inc,1967.
    [15]ZHENG D K,XU H G.Adaptive backstepping flatness control based on an adaptive state observer for a torque tracking electrohydraulic system[J].IEEE/ASME Transactions on Mechatronics,2016,21(5):2440-2452.DOI:10.1109/TMECH.2015.251-3205.
    [16]KIM W,WON D,TOMIZUKA M.Flatness-based nonlinear control for position tracking of electrohydraulic systems[J].IEEE/ASME Transactions on Mechatronics,2015,20(1):197-206.DOI:10.1109/TMEC H.2014.2310498.
    [17]MANDAL P,SARKAR B K,SAHA R,et al.GA-optimized fuzzy feed forward bias control of motion by a rugged electrohydraulic system[J].IEEE/ASME Transactions on Mechatronics,2015,20(4):1734-1742.DOI:10.1109/TMECH.2014.2352156.