摩擦加载式电液负载模拟器大幅值加载机构
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Large amplitude loading mechanism of the friction based electro-hydraulic load simulator
  • 作者:郑大可 ; 许宏光
  • 英文作者:ZHENG Dake;XU Hongguang;School of Mechatronics Engineering,Harbin Institute of Technology;
  • 关键词:摩擦 ; 电液负载模拟器 ; 大幅值力矩加载机构 ; 有限元仿真 ; 热-力耦合 ; 大幅值力矩加载实验
  • 英文关键词:friction;;electro-hydraulic load simulator;;large amplitude loading mechanism;;finite element simulation;;thermal-mechanical coupling;;large amplitude torque loading experiment
  • 中文刊名:HEBX
  • 英文刊名:Journal of Harbin Institute of Technology
  • 机构:哈尔滨工业大学机电工程学院;
  • 出版日期:2018-01-12 10:18
  • 出版单位:哈尔滨工业大学学报
  • 年:2018
  • 期:v.50
  • 语种:中文;
  • 页:HEBX201801007
  • 页数:6
  • CN:01
  • ISSN:23-1235/T
  • 分类号:42-47
摘要
为在紧凑的结构尺寸下利用现有的摩擦材料大幅度提高摩擦加载式电液负载模拟器的加载幅值,提出利用大幅值力矩加载机构进行加载的方法.给出加载机构的工作原理,设计并研制一个加载机构样机;利用ABAQUS软件建立该机构的有限元模型,并对该机构进行动态热-力耦合仿真研究,验证该机构的可行性,研究摩擦热的产生特征及其对该机构的影响,发现实际应用时需要对该机构进行充分的散热;利用研制的加载机构,将原有的单向摩擦加载式电液负载模拟器样机改造为大幅值摩擦加载式电液负载模拟器,基于改造的负载模拟器,在PID控制器控制下进行了大幅值力矩加载实验.实验结果表明:改造后的负载模拟器能够精确跟踪高达70 N·m的力矩,该机构能够按设计预期将原有负载模拟器样机力矩加载幅值提高3倍左右,验证了该机构的有效性.
        To improve the loading amplitude of friction based electro-hydraulic load simulator in compact size by using existing friction material,a loading method using a large amplitude torque loading mechanism is proposed,the working principle of the mechanism is described and a mechanism is designed and developed. The mechanism's finite element model is established then thermal-mechanical coupling simulation of the mechanism is conducted using ABAQUS software, and the feasibility of the mechanism is validated. The friction heat production characteristics and the friction heat impact on the loading mechanism are studied,and the simulation results indicate that in practical applications the mechanism needs fully heat dissipation. Using the developed loading mechanism,the original one-way friction based electro-hydraulic load simulator prototype is transformed as a large amplitude load simulator. Based on the transformed load simulator,under the control of a PID controller,the large amplitude torque loading experiments are conducted,and the experimental results indicate that the transformed load simulator can accurately track up to 70 N · m torque,the mechanism can improve the original load simulator's torque loading amplitude by 3 times as expected i.e.,the effectiveness of the mechanism is validated.
引文
[1]郝经佳.电液负载仿真台综合性能的研究[D].哈尔滨:哈尔滨工业大学,2001.HAO Jingjia.Comprehensive performance research of a electrohydraulic load simulator[D].Harbin:Harbin Institute of Technology,2001.
    [2]BASIC G.Hardware-in-the-loop simulation of mechanical loads for mechatronics system design[D].Ottawa:University of Ottawa,2003.
    [3]BASIC M.On hardware-in-the-loop simulation[C]//Proceedings of the 44th IEEE Conference on Decision and Control,and the European Control Conference.Seville:IEEE,2005:3194-3198.DOI:10.1109/CDC.2005.1582653.
    [4]李阁强,赵克定,袁锐波,等.μ理论在电液负载模拟器中的应用[J].航空学报,2007,28(1):228-233.DOI:1000-6893(2007)01-0228-06.LI Geqiang,ZHAO Keding,YUAN Ruibo,et al.Application ofμtheory in electrohydraulic load simulator[J].Acta Aeronautica et Astronautica Sinica,2007,28(1):228-233.DOI:1000-6893(2007)01-0228-06.
    [5]张彪.电液负载模拟器多余力矩抑制及其反步自适应控制研究[D].哈尔滨:哈尔滨工业大学,2009.ZHANG Biao.Extra torque rejection and adaptive backstepping control of electro hydraulic load simulator[D].Harbin:Harbin Institute of Technology,2009.
    [6]ZHANG B,CAO J,ZHAO K D,et al.Decoupling controller design for passive force control system based on backstepping control[C]//Proceedings of the 7th World Congress on Intelligent Control and Automation.Chongqing:IEEE,2008:71-76.DOI:10.1109/WCICA.2008.4594427.
    [7]WANG J F,LIANG L H,ZHANG S T,et al.Application of H infinity control based on mixed sensitivity in the electro-hydraulic load simulator[C]//Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation.Harbin:IEEE,2007:2991-2996.DOI:10.1109/ICMA.2007.4304036.
    [8]TRUONG D Q,AHN K K,SOO K J,et al.Application of fuzzyPID controller in hydraulic load simulator[C]//Proceedings of the2007 IEEE International Conference on Mechatronics and Automation.Harbin:IEEE,2007:3338-3343.DOI:10.1109/ICMA.2007.4304098.
    [9]TRUONG D Q,AHN K K.Force control for hydraulic load simulator using self-tuning grey predictor-fuzzy PID[J].Mechatronics,2009,19(2):233-246.DOI:10.1016/j.mechatronics.2008.07.007.
    [10]NAM Y.QFT force loop design for the aerodynamic load simulator[J].IEEE Transactions on Aerospace and Electronic Systems,2001,37(4):1384-1392.DOI:10.1109/7.976973.
    [11]CUI J M,ZHANG B,DONG Y L.A study on performance of electro-hydraulic load simulator based on pressure servo valve[C]//Proceedings of the 2015 International Conference on Fluid Power and Mechatronics.Harbin:IEEE,2015:505-509.DOI:10.1109/FP M.2015.7337170.
    [12]ZHENG D K,XU H G.Adaptive backstepping flatness control based on an adaptive state observer for a torque tracking electrohydraulic system[J].IEEE/ASME Transactions on Mechatronics,2016,21(5):2440-2452.DOI:10.1109/TMECH.2015.251 3205.
    [13]郑大可,许宏光.摩擦加载式电液负载模拟器力矩加载实验[J].哈尔滨工业大学学报,2017,49(1):66-71.ZHENG Dake,XU Hongguang.Torque tracking experiment of a friction based electro-hydraulic load simulator[J].Journal of Harbin Institute of Technology,2017,49(1):66-71.DOI:10.11918/j.issn.0367-6234.2017.01.009.
    [14]章少阳.酚醛树脂制动材料的制备与摩擦磨损性能研究[D].哈尔滨:哈尔滨工业大学,2007.ZHANG Shaoyang.Preparation of phenolic braking materials and their friction and wear performances[D].Harbin:Harbin Institute of Technology,2007.
    [15]赵腾伦.ABAQUS 6.6在机械工程中的应用[M].北京:中国水利水电出版社,2007:174-187.ZHAO Tenglun.Applications of ABAQUS 6.6 in mechanical engineering[M].Beijing:China Water Power Press,2007:174-187.
    [16]MANDAL P,SARKAR B K,SAHA R,et al.GA-optimized fuzzy feed forward bias control of motion by a rugged electrohydraulic system[J].IEEE/ASME Transactions on Mechatronics,2015,20(4):1734-1742.DOI:10.1109/TMECH.2014.2352156.
    [17]KIM W,WON D,TOMIZUKA M.Flatness-based nonlinear control for position tracking of electrohydraulic systems[J].IEEE/ASME Transactions on Mechatronics,2015,20(1):197-206.DOI:10.1109/TMECH.2014.2310498.
    [18]LIN Y,SHI Y,BURTON R.Modeling and robust discrete-time sliding-mode control design for a fluid power electrohydraulic actuator(EHA)System[J].IEEE/ASME Transactions on Mechatronics,2013,18(1):1-10.DOI:10.1109/TMECH.2011.2160959.