机匣对带俯仰角叶片的包容性试验与仿真研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Targeting Experiment and Evaluation Simulation of Aero-Engine Casing Impacted by Blade with Pitch Angle
  • 作者:万云帆 ; 张帆 ; 曹振忠 ; 章定国
  • 英文作者:WAN Yun-fan;ZHANG Fan;CAO Zhen-zhong;ZHANG Ding-guo;School of Science, Nanjing University of Science and Technology;
  • 关键词:航空发动机 ; 俯仰角 ; 打靶试验 ; 包容性 ; 数值仿真
  • 英文关键词:Aero-engine;;Pitch angle;;Targeting experiment;;Containment;;Numerical simulation
  • 中文刊名:JSJZ
  • 英文刊名:Computer Simulation
  • 机构:南京理工大学理学院;
  • 出版日期:2019-05-15
  • 出版单位:计算机仿真
  • 年:2019
  • 期:v.36
  • 语种:中文;
  • 页:JSJZ201905012
  • 页数:5
  • CN:05
  • ISSN:11-3724/TP
  • 分类号:64-68
摘要
航空发动机发生非包容事故时,叶片从高速转子脱落并带有姿态角撞向发动机机匣,但在已有的机匣包容性相关研究中,大部分为叶片正面直接冲击靶板,较少考虑叶片撞击时的姿态角对机匣包容性的影响。为研究双层金属机匣在受到带俯仰角的断裂叶片撞击时的包容能力和破坏模式,运用滑膛炮进行打靶试验模拟高速叶片撞击机匣,采用有限元仿真软件对打靶试验进行数值仿真,并通过仿真方法对机匣包容性规律开展进一步探索。结果表明,数值仿真结果与打靶试验结果较为吻合,仿真可准确评估打靶试验的靶板强度、预估发动机机匣包容性。基于此,运用仿真得出带俯仰角叶片撞击机匣的包容经验公式,得出机匣包容临界速度与叶片俯仰角成正比的结论,并分析了不同俯仰角对靶板破坏模式的影响。
        When an aero-engine non-containment accident occurs, the blades will fall off from high-speed rotor and impact engine casing with attitude angle. In most containment research on aero-engine casing, blade impacted the casing directly, and the blade pitch angle impacting on casing was seldom considered. To study the containment capability and failure mode of double layer metal casing impacted by blade with pitch angle, a targeting experiment was conducted on a smoothbore gun testing system, and numerical simulations were carried out using explicit transient dynamic software. It shows that the numerical simulation results agree well with the targeting experiments. The influence of yaw blade on the critical velocity was studied by further numerical simulation, and the relationship formula is fitted. Simulation results prove that the containment critical speed of casing is proportional to the blade pitch angle, and the casing failure mode was studied.
引文
[1] 陈光.航空发动机结构设计分析[M].北京:航空航天大学出版社,2014.
    [2] 宣海军,等.航空发动机机匣包容性研究综述[J].航空动力学报,2010,25(8):1860-1870.
    [3] 柴象海,等.航空发动机风扇机匣包容性等效试验与分析方法[J].振动与冲击,2016,35(2):162-167.
    [4] 段玥晨,等.航空发动机机匣包容性打靶试验与仿真研究[J].计算机仿真,2014,31(4):106-109.
    [5] W Goldsmith.Non-ideal projectile impact on targets[J].International Journal of Impact Engineering,1999,22(2-3):95-395.
    [6] Y F Deng,et al.Numerical Study of Failure Modes and Crack Propagation in 2A12 Aluminum Target Against Blunt-Nosed Projectile at Low Yaw Angle[J].Strength of Materials,2016,48(6):834-849.
    [7] M J Normandia.Eroded length model for yawed penetrators impacting finite thickness targets at normal and oblique incidence[J].International Journal of Impact Engineering,1999,23(1):663-674.
    [8] 何庆,等.薄靶板受叶片形弹体撞击的数值仿真研究[J].工程力学,2010,27(4):234-239.
    [9] 何庆,等.叶片相互作用对机匣/叶片包容过程的影响[J].工程力学,2012,(a01):180-184.
    [10] 许善迎,等.编织复合材料弹体和靶板偏航撞击响应分析[J].南京航空航天大学学报,2017,49(1):67-75.
    [11] J A Zukas,D R Scheffler.Practical aspects of numerical simulations of dynamic events:effects of meshing[J].International Journal of Impact Engineering,2000,24(9):925-945.
    [12] N Jaunky,R E Lawson,D R Ambur.Penetration simulation for uncontained engine debris impact on fuselage-like panels using LS-DYNA[J].Finite Elements in Analysis & Design,2000,36(2):99-133.
    [13] S K Sinha,S Dorbala.Dynamic Loads in the Fan Containment Structure of a Turbofan Engine[J].Journal of Aerospace Engineering,2009,22(3):260-269.