基于机器学习的RNA编辑位点预测方法综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review:prediction of RNA editing sites based on machine learning
  • 作者:冷嘉承 ; 吴凌云
  • 英文作者:LENG Jiacheng;WU Lingyun;Academy of Mathematics and Systems Science,Institute of Applied Mathematics,Chinese Academy of Science;School of Mathematics Sciences,University of Chinese Academy of Sciences;
  • 关键词:RNA编辑 ; 高通量测序 ; A-to-I ; 机器学习
  • 英文关键词:RNA editing;;High-throughput sequencing;;A-to-I;;Machine learning
  • 中文刊名:XXSW
  • 英文刊名:Chinese Journal of Bioinformatics
  • 机构:中国科学院数学与系统科学研究院应用数学研究所,管理、决策与信息系统重点实验室,国家数学与交叉科学中心;中国科学院大学数学科学学院;
  • 出版日期:2019-03-11 10:47
  • 出版单位:生物信息学
  • 年:2019
  • 期:v.17;No.62
  • 基金:国家自然科学基金(No.11631014; No.91730301;No.11661141019)
  • 语种:中文;
  • 页:XXSW201901001
  • 页数:8
  • CN:01
  • ISSN:23-1513/Q
  • 分类号:3-10
摘要
RNA编辑是一个十分重要的生物细胞分子机制。作为转录后修饰的一步,它可以增加蛋白质组学多样性,改变转录产物的稳定性,调节基因表达等。RNA编辑失调会导致各种疾病,包括神经疾病和癌症。在动物中,腺苷到肌苷(A-to-I)的编辑是最普遍的。高通量测序技术的进步大大提高了在全局范围内检测和量化RNA编辑的能力,使得RNA编辑的大规模全基因组分析变得可行,产生了一系列基于高通量测序技术的RNA编辑位点预测方法。通过对这些方法进行介绍、总结和分析,为RNA编辑的进一步研究提供一些思路。
        RNA editing is an important molecular mechanism of biological cells. As a step of post-transcriptional modification, it can increase proteomic diversity, alter the stability of transcription products, regulate gene expression, and so on. RNA editing disorders can lead to a variety of diseases, including neurological diseases and cancer. Among animals, the editing of adenosine to inosine(A-to-I) is the commonest. Advances in high-throughput sequencing technology have greatly improved the ability to detect and quantify RNA editing globally, which can make large-scale genome-wide analysis of RNA editing feasible, thereby resulting in a series of prediction methods of RNA editing sites based on high-throughput sequencing technology. This article will introduce and summarize these methods and provide new perspectives for further research of RNA editing.
引文
[1]ROSENTHAL J J, SEEBURG P H. A-to-I RNA editing: effects on proteins key to neural excitability[J]. Neuron, 2012, 74(3): 432-439.DOI:10.1016/j.neuron.2012.04.010.
    [2]GARRETT S, ROSENTHAL J J. RNA editing underlies temperature adaptation in K+ channels from polar octopuses[J]. Science, 2012, 335(6070): 848-851.DOI: 10.1126/science.1212795.
    [3]CHEN L, LI Y, LIN C H, et al. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma[J]. Nature Medicine, 2013, 19(2): 209-216.DOI: 10.1038/nm.3043.
    [4]LI M, WANG I X, LI Y, et al. Widespread RNA and DNA sequence differences in the human transcriptome[J]. Science, 2011, 333(6038): 53-58.DOI:10.1126/science.1207018.
    [5]SCHRIDER D R, GOUT J F, HAHN M W. Very few RNA and DNA sequence differences in the human transcriptome[J]. PLoS One, 2011, 6(10): e25842.DOI: 10.1371/journal.pone.0025842.
    [6]RAMASWAMI G, LIN W, PISKOL R, et al. Accurate identification of human Alu and non-Alu RNA editing sites[J]. Nature Methods, 2012, 9(6): 579-581.DOI:10.1038/nmeth.1982.
    [7]PICARDI E, D’ANTONIO M, CARRABINO D, et al. ExpEdit: a webserver to explore human RNA editing in RNA-seq experiments[J]. Bioinformatics, 2011, 27(9): 1311-1312.DOI:10.1093/bioinformatics/btr117.
    [8]LIANG G, KITAMURA K, WANG Z, et al. RNA editing of hepatitis B virus transcripts by activation-induced cytidine deaminase[J]. Proceedings of the National Academy of Science, 2013, 110(6): 2246-2251.DOI:10.1073/pnas.1221921110.
    [9]SUN J M, YANG D M, OSMARK P, et al. Discriminative prediction of A-to-I RNA editing events from DNA sequence[J]. PLoS One, 2016, 11(10): e0164962.DOI:DOI:10.1371/journal.pone.0164962.
    [10]RAMASWAMI G, ZHANG R, PISKOL R, et al. Identifying RNA editing sites using RNA sequencing data alone[J]. Nature Methods, 2013, 10(2): 128-132.
    [11]ZHANG Q, XIAO X. Genome sequence-independent identification of RNA editing sites[J]. Nature Methods, 2015, 12(4): 347-350. DOI: 10.1038/nmeth.3314.
    [12]XIONG Heng, LIU Dongbing, LI Qiye, et al. RED-ML: a novel, effective RNA editing detection method based on machine learning[J]. Gigascience, 2017, 6(5): 1-8.DOI:10.1093/gigascience/gix012.
    [13]PENG Zhiyu,CHENG Yanbing, TAN B C, et al. Comprehensive analysis of RNA-seq data reveals extensive RNA editing in a human transcriptome[J]. Nature Biotechnology, 2012, 30(3): 253-260. DOI:10.1038/nbt.2122.
    [14]KIM M S, HUR B, KIM S. RDDpred: a condition-specific RNA-editing prediction model from RNA-seq data[J]. BMC Genomics, 2016, 17 (Suppl 1): 5. DOI:10.1186/s12864-015-2301-y.
    [15]BAHN J H, LEE J H, LI G, et al. Accurate identification of A-to-I RNA editing in human by transcriptome sequencing[J]. Genome Research, 2012, 22(1): 142-150.DOI:10.1101/gr.124107.111.
    [16]PARK E, WILLIAMS B, WOLD B J, et al. RNA editing in the human ENCODE RNA-seq data[J]. Genome Research, 2012, 22(9): 1626-1633.
    [17]ZHU Shanshan, XIANG Jianfeng, CHEN Tian,et al. Prediction of constitutive A-to-I editing sites from human transcriptomes in the absence of genomic sequences[J]. BMC Genomics, 2013, 14(1): 206. DOI:10.1186/1471-2164-14-206.
    [18]PICARDI E, PESOLE G. REDItools: high-throughput RNA editing detection made easy[J]. Bioinformatics, 2013, 29(14): 1813-1814.DOI: 10.1093/bioinformatics/btt287.
    [19]EISENBERG E, ADAMSKY K, COHEN L, et al. Identification of RNA editing sites in the SNP database[J]. Nucleic Acids Research, 2005, 33(14): 4612-4617.DOI: 10.1093/nar/gki771.
    [20]RAMASWAMI G, LI J B. RADAR: a rigorously annotated database of A-to-I RNA editing[J]. Nucleic Acids Research, 2014, 42(Database issue): D109-113.DOI: 10.1093/nar/gkt996.
    [21]KIRAN A, BARANOV P V. DARNED: a Database of RNA Editing in humans[J]. Bioinformatics, 2010, 26(14): 1772-1776. DOI:10.1093/bioinformatics/btq285.
    [22]CHANG C C, LIN C J. LIBSVM: a library for support vector machines[J]. DNA Research,2011, 2(3): 1-27.
    [23]SCHOLKOPF B, PLATT J C, SHAWE-TAYLOR J, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2001, 13(7): 1443-1471.DOI: 10.1162/089976601750264965.