九龙江流域地表水锰的污染来源和迁移转化机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Manganese pollution in the Jiulong River watershed: Sources and transformation
  • 作者:陈能汪 ; 王德利 ; 鲁婷 ; 王芬芳 ; 姜艳 ; 林国辉 ; 庄马展
  • 英文作者:CHEN Nengwang;WANG Deli;LU Ting;WANG Fenfang;JIANG Yan;LIN Guohui;ZHUANG Mazhan;Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies,College of the Environment and Ecology,Xiamen University;State Key Laboratory of Marine Environmental Science,College of Ocean and Earth Sciences,Xiamen University;Xiamen Environmental Monitoring Central Station;
  • 关键词:锰污染 ; 溯源 ; 富营养化 ; 水质管理 ; 饮用水源 ; 九龙江
  • 英文关键词:manganese pollution;;source tracking;;water quality management;;drinking water source;;Jiulong River
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:福建省海陆界面生态环境重点实验室厦门大学环境与生态学院;近海海洋环境科学国家重点实验室厦门大学海洋与地球学院;厦门市环境监测中心站;
  • 出版日期:2018-05-25 15:55
  • 出版单位:环境科学学报
  • 年:2018
  • 期:v.38
  • 基金:国家重点研发计划(No.2016YFC0502901);; 福建省环保科技计划项目(No.2016R017)~~
  • 语种:中文;
  • 页:HJXX201808001
  • 页数:10
  • CN:08
  • ISSN:11-1843/X
  • 分类号:3-12
摘要
锰是人体必需微量元素,但近年来河流湖库等地表水锰超标现象时有发生,威胁供水安全.本文于2016—2017年在福建省九龙江流域开展水系沿程梯度调查及机理实验,结合历史监测资料综合研究,探明九龙江锰含量的时空分布与迁移转化规律,揭示九龙江锰的污染来源、超标成因与调控机制.结果表明,溶解锰高值及超标站位集中在北溪上游矿区支流和干流部分水库,且主要发生在枯水期;上游矿区支流颗粒锰含量最高,随后从上游到下游沿程递减,且与总悬浮颗粒物(TSM)和pH显著正相关(p<0.05).基于锰形态与pH值之间的密切关系和沿程变化,及培养实验中沉积物锰释放主要受控于pH的变化而非溶解氧的变化,推测九龙江地表水锰污染主要来自红壤颗粒的流失(特别是矿区和坡地),流域风化形成高pH(pH>7.8)环境促进亚热带红壤颗粒富集锰,大量富锰颗粒进入pH逐渐下降的河流下游和电站库区后向溶解锰转化,从而导致锰超标.河流下游及库区pH值下降的主要原因包括酸沉降、酸性废水排放、富营养化条件下有机物分解等.研究结果为我国地表水锰污染防控、饮用水安全保障与流域水环境综合管理提供科学依据.
        Metal manganese( Mn) in trace amounts is essential for human being. Over the past decades,dissolved Mn occasionally increased in freshwater rivers and reservoirs,which potentially deteriorated the water quality of nearby waters for drinking purposes. Here we investigated Mn concentrations along with other hydrochemical parameters in the whole Jiulong River watershed( Fujian province,Southeast China),from the upper headwaters until the river mouth,and a series of laboratory experiments were further conducted to examine the factors influencing the dissolved Mn dynamics. Combined with historic data,we explored the temporal and spatial distributions of dissolved and particulate Mn,and especially the sources,and transformation of the metal along the whole river. The study aimed to better understand the mechanism leading to the high levels of dissolved Mn in the river water system. Our results show that the high levels of dissolved Mn occurred in the upper tributaries near the mining zones,and some reservoirs in the main channel of the North Jiulong River during dry season. Particulate Mn showed a generally decreasing pattern with decreasing p H( p < 0. 05) downward along the tributary and mainstream. The laboratory experiments further provide evidence that the releases of dissolved Mn ions from sediment particles are mainly controlled by theenvironmental factor of p H instead of dissolved oxygen. Summarily we hypothesize that in the upper tributary,subtropical red soil particles strongly scavenge Mn ions under the condition of relative high p H( >7.8). Once the Mn-enriched particles flow into lower reaches of the river and dam reservoirs,the low-p H environment there promotes a substantial release of dissolved Mn ions from particles into the water column,probably as a result of acidic deposition,acidic sewage discharges,and organic matter decomposition in the eutrophic waters locally. The study therefore provides essential scientific evidence for mitigating manganese pollution,securing drinking water and integrating watershed management.
引文
Abesser C,Robinson R.2010.Mobilisation of iron and manganese from sediments of a Scottish Upland reservoir[J].Journal of Limnology,69(1):42-53
    Balistrieri L S,Murray J W,Paul B.1992.The cycling of iron and manganese in the water column of Lake Sammamish,Washington[J].Limnology and Oceanography,37(3):510-528
    Bertone E,Stewart R A,Zhang H,et al.2015.An autonomous decision support system for manganese forecasting in subtropical water reservoirs[J].Environmental Modelling&Software,73(C):133-147
    Betancourt C,Jorge F,Suarez R,et al.2010.Manganese sources and cycling in a tropical eutrophic water supply reservoir,Paso Bonito Reservoir,Cuba[J].Lake and Reservoir Management,26(3):217-226
    Bratina B J,Stevenson B S,Green W J,et al.1998.Manganese reduction by microbes from oxic regions of the Lake Vanda(Antarctica)water column[J].Applied and Environmental Microbiology,64(10):3791-3797
    Chen L,Zheng X L,Wang T J,et al.2015.Influences of key factors on manganese release from soil of a reservoir shore[J].Environmental Science and Pollution Research,22(15):11801-11812
    Chen N,Peng B,Hong H,et al.2013.Nutrient enrichment and N:Pratio decline in a coastal bay-river system in southeast China:The need for a dual nutrient(N and P)management strategy[J].Ocean&Coastal Management,81(9):7-13
    陈彬彬,王宏,郑秋萍,等.2016.福建省区域酸雨特征及成因分析[J].气象与环境学报,32(4):70-76
    陈能汪.2018.全球变化下九龙江河流-河口系统营养盐循环过程、通量与效应[J].海洋地质与第四纪地质,38(1):23-31
    陈祥军,周眉成,曲力群.2003.微生物在锰的氧化富集过程中的作用--以广西湖润锰矿为例[J].地质与勘探,39(1):23-26
    Chen Y N,Chen N W,Li Y,et al.2018.Multi-timescale sediment responses across a human impacted river-estuary system[J].Journal of Hydrology,560:160-172
    Davison W.1993.Iron and manganese in lakes[J].Earth-Science Reviews,34(2):119-163
    Dent S R,Beutel M W,Gantzer P,et al.2014.Response of methylmercury,total mercury,iron and manganese to oxygenation of an anoxic hypolimnion in North Twin Lake,Washington[J].Lake and Reservoir Management,30(2):119-130
    Estes E R,Andeer P F,Nordlund D,et al.2017.Biogenic manganese oxides as reservoirs of organic carbon and proteins in terrestrial and marine environments[J].Geobiology,15(1):158-172
    Friedl G,Wehrli B,Manceau A.1997.Solid phases in the cycling of manganese in eutrophic lakes:New insights from EXAFSspectroscopy[J].Geochimica Et Cosmochimica Acta,61(2):275-290
    Gantzer P A,Bryant L D,Little J C.2009.Controlling soluble iron and manganese in a water-supply reservoir using hypolimnetic oxygenation[J].Water Research,43(5):1285-1294
    Giles C D,Isles P D F,Manley T,et al.2016.The mobility of phosphorus,iron,and manganese through the sediment-water continuum of a shallow eutrophic freshwater lake under stratified and mixed water-column conditions[J].Biogeochemistry,127(1):15-34
    Granina L Z,Callender E.2006.The role of biological uptake in iron and manganese cycling in Lake Baikal[J].Hydrobiologia,568(1):41-43
    郝瑞霞,彭省临.1998.锰的微生物地球化学[J].矿物岩石地球化学通报,17(3):59-62
    洪继华,王庭健.1985.于桥水库流域暴雨径流中锰的输送特征及其对水库水质的影响[J].环境科学学报,5(4):405-410
    Hongve D.1997.Cycling of iron,manganese,and phosphate in a meromictic lake[J].Limnology and Oceanography,42(4):635-647
    Kosmulski M.2001.Chemical properties of material surfaces[M].New York:Mercel Dekker,Inc
    刘进超,王欧美,李佳佳.2018.生物地球化学锰循环中的微生物胞外电子传递机制[J].微生物学报,58(4):546-559
    刘京雄,林长城,蔡义勇,等.2007.闽南地区酸雨特征与其影响天气系统的统计分析[J].热带气象学报,23(1):53-58
    刘树元,郑晨,袁琪,等.2014.台州长潭水库铁锰质量浓度变化特征及其成因分析[J].环境科学,35(10):3702-3708
    Martynova M V.2017.Correlating the Concentration of Mobile Manganese with Redox-and Acid-Base Properties in Sediment Column of the Mozhaisk Reservoir in the Period of Its Formation(1970-1975)[J].Water Resources,44(5):758-767
    Munger Z W,Shahady T D,Schreiber M E.2017.Effects of reservoir stratification and watershed hydrology on manganese and iron in a dam-regulated river[J].Hydrological Processes,31(8):1622-1635
    Palermo C,Dittrich M.2016.Evidence for the biogenic origin of manganese-enriched layers in Lake Superior sediments[J].Environmental Microbiology Reports,8(2):179-186
    Papina T S,Eirikh A N,Serykh T G,et al.2017.Space and time regularities in the distribution of dissolved and suspended manganese forms in novosibirsk reservoir water[J].Water Resources,44(2):276-283
    Peng H,Zheng X L,Chen L,et al.2016.Analysis of numerical simulations and influencing factors of seasonal manganese pollution in reservoirs[J].Environmental Science and Pollution Research,23(14):14362-14372
    Salazar G J P,Alfaro-De la Torre M C,Aguirre R N J,et al.2013.Geochemical fractionation of manganese in the Riogrande IIreservoir,Antioquia,Colombia[J].Environmental Earth Sciences,69(1):197-208
    Schroth A W,Giles C D,Isles P D F,et al.2015.Dynamic coupling of iron,manganese,and phosphorus behavior in water and sediment of shallow ice-covered eutrophic lakes[J].Environmental Science&Technology,49(16):9758-9767
    Wang D L,Lin W F,Yang X Q,et al.2012.Occurrences of dissolved trace metals(Cu,Cd,and Mn)in the Pearl River Estuary(China),a large river-groundwater-estuary system[J].Continental Shelf Research,50:54-63
    White D J,Noll M R,Makarewicz J C.2008.Does manganese influence phosphorus cycling under suboxic lake water conditions?[J].Journal of Great Lakes Research,34(4):571-580
    World Health Organization.2017.Guidelines for Drinking-Water Quality Fourth Edition[M/OL].http://www.who.int/water_sanitation_health/publications/drinking-water-quality-guidelines-4-including-1st-addendum/en/.631
    万国江,胡其乐,曹龙,等.2001.资源开发-环境灾害-地球化学---以贵州阿哈湖铁、锰污染为例[J].地学前缘,8(2):353-358
    王泉波,陈蕾,郑西来.2016.水库沉积物-水界面可溶性锰与环境因素的相关性[J].环境工程学报,10(11):6139-6146
    徐毓荣,徐钟际,向申,等.1999.季节性缺氧水库铁、锰垂直分布规律及优化分层取水研究[J].环境科学学报,19(2):147-152
    徐毓荣,徐钟际,徐玮,等.1998.阿哈水库流域含铁、锰面源废水河流控制系统[J].环境科学研究,11(6):20-23
    杨思远,赵剑,余华章,等.2017.南亚热带地区水库夏季铁、锰垂直分布特征[J].环境科学,38(11):4546-4552
    于海涛,潘伟斌,侯晓辉.2012.供水水库沉积物中铁锰的释放规律研究[J].工业安全与环保,38(4):72-75
    张庆刚,庄卫民,王果.1998.福建红壤矿物学特性研究[J].土壤通报,29(3):103-105
    朱维晃,吴丰昌.2006.贵阳市阿哈湖水库中铁、锰的形态分布[J].中国环境科学,26(s1):83-86
    Zeng L Q,Yang F,Yan C Z,et al.2018.High-resolution characterization of labile phosphorus,iron,and manganese in sediments of different trophic waters in Lake Taihu,China[J].Water Science and Technology,77(2):286-295
    Zoni S,Albini E,Lucchini R.2007.Neuropsychological testing for the assessment of manganese neurotoxicity:A review and a proposal[J].American Journal of Industrial Medicine,50(11):812-830