设施土壤有机氮组分及番茄产量对水氮调控的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of soil organic nitrogen fractions and tomato yield to irrigation and nitrogen fertilization in greenhouse
  • 作者:吴汉卿 ; 杜世宇 ; 王丹阳 ; 薛飞 ; 张玉玲 ; 邹洪涛 ; 张玉龙 ; 虞娜
  • 英文作者:WU Han-qing;DU Shi-yu;WANG Dan-yang;XUE Fei;ZHANG Yu-ling;ZOU Hong-tao;ZHANG Yu-long;YU Na;College of Land and Environment, Shenyang Agricultural University/Key Laboratory of Arable Land Conservation of Northeast China, Ministry of Agriculture and Rural Affairs/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources;
  • 关键词:酸解铵态氮 ; 酸解氨基酸氮 ; 膜下滴灌 ; 土壤水吸力 ; 供氮水平 ; 番茄产量
  • 英文关键词:acidolysable ammonium N;;acidolysable amino acid N;;fertigation under plastic film;;soil water suction;;nitrogen rate;;tomato yield
  • 中文刊名:ZWYF
  • 英文刊名:Journal of Plant Nutrition and Fertilizers
  • 机构:沈阳农业大学土地与环境学院/农业农村部东北耕地保育重点实验室/土肥资源高效利用国家工程实验室;
  • 出版日期:2019-05-25
  • 出版单位:植物营养与肥料学报
  • 年:2019
  • 期:v.25;No.128
  • 基金:国家自然基金项目(41401322);; 国家重点研发计划项目课题(2016YFD0300807);; 国家科技支撑计划(2015BAD23B01);; 农业部东北耕地保育重点实验室开放基金课题(2015NYBKFT-01)资助
  • 语种:中文;
  • 页:ZWYF201905012
  • 页数:9
  • CN:05
  • ISSN:11-3996/S
  • 分类号:111-119
摘要
[目的]酸解铵态氮和酸解氨基酸氮是土壤有机氮的主要组分,可表征土壤的供氮能力,并在氮素矿化、固定、迁移以及为植物生长供氮过程中起到至关重要的作用。研究水、氮调控下设施土壤有机氮组分和番茄产量的相互关系,为评价设施土壤肥力变化和制定科学合理的水、氮管理措施提供科学依据。[方法]田间定位试验在沈阳农业大学的温室内进行了5年,供试作物为番茄,栽培垄上覆盖薄膜,打孔移栽番茄幼苗,膜下滴灌。定位试验三个氮肥处理为施N 75、300、525 kg/hm~2,记为N_1、N_2和N_3;三个灌水量为25、35和45kPa灌水下限(灌水始点土壤水吸力),记为W_1、W_2和W_3,共9个肥水处理组合。在试验第五年番茄生长期(2016年4-8月)调查了番茄产量及其构成,在休闲期(2016年9月)测定0—10、10—20和20—30 cm土层土壤有机氮组分、有机碳和全氮含量。[结果]9个处理中,土壤全氮、有机碳和除酸解氨基糖氮外的有机氮组分含量均随土层深度的增加而降低,且0—10、10-20和20—30 cm土层间含量差异显著(P<0.05)。三个土层中酸解总氮占土壤全氮的66.0%、64.6%和55.2%,是土壤有机氮的主要存在形态。土壤酸解总氮中各组分含量及其所占比例的大小顺序为酸解氨基酸氮、酸解铵态氮>酸解未知态氮>酸解氨基糖氮。灌水下限和施氮量对番茄产量及单果重的影响均达极显著水平(P<0.01),水氮交互效应也达显著水平(P<0.05)。休闲期土壤酸解鞍态氮与番茄产量间显著负相关(P <0.05)。番茄产量W_1N_2 (25 kPa+N 300 kg/hm~2)、W_2N_1 (35 kPa+N 75kg/hm~2)和W_1N_1 (25 kPa+75 kg/hm~2)处理间差异不显著。[结论]灌水和施氮量及其交互效应对各土层土壤全氮、酸解总氮、酸解铵态氮和酸解氨基酸氮的影响均达到极显著水平(P<0.01),而对土壤有机碳的影响不显著(P> 0.05)。相同施氮量下,0—30 cm土层酸解铵态氮和0—20 cm土层酸解氨基酸氮含量均在土壤水吸力维持在35~6 kPa范围内达最高值,此土壤水分含量下的0—20 cm土层酸解氨基酸氮含量在施N 75 kg/hm~2时达到最大值。从节水减氮和番茄产量的角度考虑,控制土壤水吸力不低于35 kPa、每季随水施N 75 kg/hm~2为供试番茄生产条件下最佳的水、氮组合量。
        [Objectives]Acidolysable ammonium N(AN) and acidolysable amino acid N(AAN) are the dominated forms of soil organic nitrogen, which play key roles in the processes of soil nitrogen metabolism and nitrogen supply for plant growth. The effect of long-term irrigation and nitrogen fertilization on the AN and AAN contents was investigated, to evaluate soil nitrogen supply ability and provide reference for scientific water and nutrient management in greenhouse.[Methods ]A five-year's tomato field experiment was conducted in the greenhouse of Shenyang Agricultural University. The field was mulched with plastic film and drip irrigation pipes were loaded under the film. The treatment included three nitrogen rates of 75 kg/hm~2(N,), 300 kg/hm~2(N_2)and 525 kg/hm~2(N_3), and three irrigation rate, in which the irrigation amounts were controlled in soil water tension ranges of 25-6 kPa(W_1), 35-6 kPa(W_2) and 45-6 kPa(W_3). The yield and yield components of tomato were investigated in August 2016. The contents of soil organic nitrogen fractions, total nitrogen(TN) and organic carbon(SOC) in 0-10 cm, 10-20 cm and 20-30 cm soil depths were determined in the fallow period(September, 2016).[Results ]The proportions of acidolysable N(AHN) in 0-10, 10-20 and 20-30 cm deep of soil were 66.0%, 64.6% and 55.2%, respectively. The contents of TN, SOC and all soil organic nitrogen fractions, except acidolysable amino sugar N(ASN), decreased with the increasing of soil depths, and the differences of contents among the three soil depths were significant at 5% level. The content and the proportion of each fraction in the AHN was in order of AAN, AN > acidolysable unknown N(UN) > ASN. Under the same N application rate, the contents of AN in 0-30 cm soil depths and the contents of A AN in 0-20 cm soil depths were both the highest in the irrigation treatment of W2. Moreover, the contents of AAN in 0-10 and10-20 cm soil depths were also the highest in the W_2 N_1 treatment(35 kPa + 75 kg/hm~2). The single effect of irrigation and nitrogen rate on tomato yield and yield components were extremely significant(P < 0.01), and their interaction was also significant(P < 0.05). AN content during the fallow period had a significant negative correlation with tomato yield. There were no significant differences in tomato yield among the treatments of W,N2(25 kPa + 300 kg/hm~2),W_2 N_1(35 kPa + 75 kg/hm~2) and W_1 N_1(25 kPa + 75 kg/hm~2).[Conclusions]Irrigation and nitrogen fertilization significantly influence the contents of total nitrogen, acidolysable nitrogen, acidolysable amino acid nitrogen and acidolysable ammonium nitrogen in the soil(P < 0.01), but not on soil organic carbon contents. Significant interaction of irrigation and fertilization is existed at the same time. In the view of watersaving and nitrogen-reducing with high tomato yield, keeping soil water suction in range of 35-6 kPa, and applying N of 75 kg/hm~2 is the optimum combination of irrigation and nitrogen fertilization in tomato production inside greenhouse.
引文
[1] Mulvaney R L, Khan S A, Hoeft R G, et al. A soil organic nitrogen fraction that reduces the need for nitrogen fertilization[J]. Soil Science Society of America Journal, 2001, 65(4):1164-1172.
    [2]Zhang Y L, Xu W J, Duan P P, et al. Evaluation and simulation of nitrogen mineralization of paddy soils in Mollisols area of Northeast China under waterlogged incubation[J]. PLoS One, 2017, 12(2):e0171022.
    [3] Li Y M, Sun Y X, Liao S Q, et al. Effects of two slow-release nitrogen fertilizers and irrigation on yield, quality, and water-fertilizer productivity of greenhouse tomato[J]. Agricultural Water Management, 2017, 186:139-146.
    [4]Mahajan G, Singh K G. Response of greenhouse tomato to irrigation and fertigation[J]. Agricultural Water Management, 2006, 84(1-2):202-206.
    [5]Kwon H Y, Hudson R J M, Mulvaney R L. Characterization of the organic nitrogen fraction determined by the Illinois soil nitrogen test[J]. Soil Science Society of America Journal, 2009, 73(3):1033-1043.
    [6]丛耀辉,张玉玲,张玉龙,等.黑土区水稻土有机氮组分及其对可矿化氮的贡献[J].土壤学报,2016,53(2):457-467.Cong Y H, Zhang Y L, Zhang Y L, et al. Soil organic nitrogen components and their contribution to mineralizable nitrogen in paddy soil of the black soil region[J]. Acta Pedologica Sinica, 2016, 53(2):457-467.
    [7] Xu Y C, Shen Q R, Ran W. Content and distribution of forms of organic N in soil and particle size fractions after long-term fertilization[J]. Chemosphere, 2003, 50(6):739-745.
    [8]郝小雨,马星竹,高中超,等.长期施肥下黑土活性氮和有机氮组分变化特征[J].中国农业科学,2015,48(23):4707-4716.Hao X Y, Ma X Z, Gao Z C, et al. Variation characteristics of fractions of active nitrogen and organic nitrogen under different longterm fertilization practices in black soil[J]. Scientia Agricultura Sinica, 2015, 48(23):4707-4716.
    [9]姬景红,张玉龙,黄毅,等.灌溉方法对保护地土壤有机氮组分及剖面分布的影响[J].水土保持学报,2007, 21(6):99-104.Ji J H, Zhang Y L, Huang Y, et al. Effect of different irrigation methods on forms and profile distribution of soil organic nitrogen in protected field[J]. Journal of Soil and Water Conservation, 2007,21(6):99-104.
    [10] Tian J H, Wei K, Condron L M, et al. Effects of elevated nitrogen and precipitation on soil organic nitrogen fractions and nitrogenmineralizing enzymes in semi-arid steppe and abandoned cropland[J].Plant and Soil,2017, 417(1-2):217-229.
    [11] Gao N, Liu Y, Wu H Q, et al. Interactive effects of irrigation and nitrogen fertilizer on yield, nitrogen uptake, and recovery of two successive Chinese cabbage crops as assessed using 15N isotope[J].Scientia Horticulturae, 2017, 215(27):117-125.
    [12]马建辉,叶旭红,韩冰,等.膜下滴灌不同灌水控制下限对设施土壤团聚体分布特征的影响[J].中国农业科学,2017,50(18):3561-3571.Ma J H, Ye X H, Han B, et al. Effects of different controlled irrigation low limits on the size distribution of soil aggregates with drip irrigation under film mulching in a greenhouse soil[J]. Scientia Agricultura Sinica, 2017, 50(18):3561-3571.
    [13] Bremner J M. Organic forms of nitrogen[M]. Madision:American Society of Agronomy, 1965. 1238-1255.
    [14] Jiang Q, Li Q, Wang X, et al. Estimation of soil organic carbon and total nitrogen in different soil layers using VNIR spectroscopy:Effects of spiking on model applicability[J]. Geoderma, 2017, 293:54-63.
    [15] Spargo J T, Cavigelli M A, Alley M M, et al. Changes in soil organic carbon and nitrogen fractions with duration of no-tillage management[J]. Soil Science Society of America Journal, 2012,76(5):1624-1633.
    [16] Yang J, Gao W, Ren S. Long-term effects of combined application of chemical nitrogen with organic materials on crop yields, soil organic carbon and total nitrogen in fluvo-aquic soil[J]. Soil and Tillage Research, 2015, 151:67-74.
    [17] Zhang W, Xu M, Wang B, et al. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of southern china[J]. Nutrient Cycling in Agroecosystems, 2009,84(1):59-69.
    [18]俞华林,张恩和,王琦,等.灌溉和施氮对免耕留茬春小麦农田土壤有机碳、全氮和籽粒产量的影响[J].草业学报,2013, 22(3):227-233.Yu H L, Zhang E H, Wang Q, et al. Effects of irrigation and N supply levels on soil organic carbon, total nitrogen and grain yield of spring wheat on no-tillage farmland with standing stubble[J]. Acta Prataculturae Sinica, 2013, 22(3):227-233.
    [19] Shahid M, Nayak A K, Kumar A, et al. Carbon and nitrogen fractions and stocks under 41 years of chemical and organic fertilization in a sub-humid tropical rice soil[J]. Soil and Tillage Research, 2017, 170:136-146.
    [20]张永全,寇长林,马政华,等.长期有机肥与氮肥配施对潮土有机碳和有机氮组分的影响[J].土壤通报,2015, 46(3):584-589.Zhang Y Q, Kou C L, Ma Z H, et al. Effects of long term combination application of organic manure and nitrogen fertilizer on organic carbon and organic nitrogen forms of fluvo-aquic soil[J].Chinese Journal of Soil Science, 2015, 46(3):584-589.
    [21]刘顺,盛可银,刘喜帅,等.陈山红心杉根际土壤有机碳、氮含量及根际效应[J].生态学杂志,2017, 36(7):1957-1964.Liu S, Sheng K Y, Liu X S, et al. Contents of soil organic carbon and nitrogen forms in rhizosphere soil of Cunninghamia lanceolata and the rhizopshere effect[J]. Chinese Journal of Ecology, 2017, 36(7):1957-1964.
    [22]王鹏勃,李建明,丁娟娟,等.水肥耦合对温室袋培番茄品质、产量及水分利用效率的影响[J].中国农业科学,2015,48(2):314-323.Wang P B, Li J M, Ding J J, et al. Effect of water and fertilizer coupling on quality, yield and water use efficiency of tomato cultivated by organic substrate in bag[J]. Scientia Agricultura Sinica,2015, 48(2):314-323.
    [23] Sekhon K S, Singh J P, Mehla D S. Long-term effect of manure and mineral fertilizer application on the distribution of organic nitrogen fractions in soil under a rice-wheat cropping system[J]. Archives of Agronomy and Soil Science, 2011, 57(7):705-714.
    [24] Wang S R, Jiao L X, Jin X C, et al. Characteristics of organic nitrogen fractions in sediments of the shallow lakes in the middle and lower reaches of the Yangtze river area in China[J]. Water and Environment Journal, 2009, 26(4):473-481.
    [25]罗如熠,张世熔,徐小逊,等.黑河下游湿地土壤有机氮组分剖面的分布特征[J].生态学报,2015, 35(4):956-964.Luo R Y, Zhang S R, Xu X X, et al. Profile distribution characteristics of soil organic nitrogen fractions in the lower reaches of the Heihe River wetland[J]. Acta Ecologica Sinica, 2015, 35(4):956-964.
    [26] Lu H L, Li S Q, Jin F H, et al. Contributions of organic nitrogen forms to mineralized nitrogen during incubation experiments of the soils on the Loess Plateau[J]. Communications in Soil Science and Plant Analysis,2009, 40(21-22):3399-3419.
    [27] Bardgett R D, Streeter T C, Bol R. Soil microbes compete effectively with plants for organic nitrogen inputs to temperate grasslands[J].Ecology,2003, 84(5):1277-1287.
    [28] Stanford G, Epstein E. Nitrogen mineralization-water relations in soils[J]. Soil Science Society of America Journal, 1974,38(1):289-299.
    [29] Clark L A, Roberts T L, Slaton N A. Estimation of mineralizable nitrogen from 15N-labelled crop residues using alkaline-hydrolyzable nitrogen methods[J]. Soil Science Society of America Journal, 2015,79(4):1243-1248.
    [30] Rothrock M J, Cook K L, Warren J G, et al. Microbial mineralization of organic nitrogen forms in poultry litters[J]. Journal of Environmental Quality, 2010, 39(5):1848-1857.
    [31] Wang Y, Janz B, Engedal T, et al. Effect of irrigation regimes and nitrogen rates on water use efficiency and nitrogen uptake in maize[J]. Agricultural Water Management, 2016, 179:271-276.