纳米二氧化硅对铝合金表面环氧涂层耐蚀性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Nano SiO_2 on the Corrosion Resistance of Epoxy Resin Coatings on Aluminum Alloys
  • 作者:张培 ; 左禹 ; 周振
  • 英文作者:ZHANG Pei;ZUO Yu;ZHOU Zhen;School of Chemistry and Food Science,Yulin Normal University,Guangxi Key Laboratory for Agricultural Resources Chemistry and Biotechnology;College of Materials Science and Engineering,Beijing University of Chemical Technology;
  • 关键词:铝合金 ; 纳米二氧化硅 ; 环氧树脂涂层 ; 电化学阻抗谱 ; 孔隙率
  • 英文关键词:aluminum alloy;;nano SiO_2;;epoxy resin coating;;electrochemical impedance spectroscopy(EIS);;porosity
  • 中文刊名:FSYF
  • 英文刊名:Corrosion & Protection
  • 机构:广西农产资源化学与生物技术重点实验室玉林师范学院化学与食品科学学院;北京化工大学材料科学与工程学院;
  • 出版日期:2018-10-15
  • 出版单位:腐蚀与防护
  • 年:2018
  • 期:v.39;No.348
  • 基金:2016年度广西高校中青年教师基础能力提升项目(KY2016YB369)
  • 语种:中文;
  • 页:FSYF201810011
  • 页数:6
  • CN:10
  • ISSN:31-1456/TQ
  • 分类号:60-65
摘要
通过往环氧树脂涂层中添加纳米二氧化硅制备了二氧化硅/环氧树脂涂层,采用Machu测试和电化学阻抗谱分析了二氧化硅/环氧树脂涂层的耐蚀性能,并对电化学阻抗谱数据进行分析得到涂层的孔隙率。结果表明:未添加二氧化硅环氧树脂涂层的耐蚀性最差,添加10%二氧化硅环氧树脂涂层的耐蚀性最优;二氧化硅在环氧树脂涂层中起到阻挡屏蔽作用,但添加的二氧化硅过多时,容易发生团聚现象,导致涂层的耐蚀性下降;涂层的孔隙率越大,意味着涂层中的微孔数量越多,微孔面积越大,导致腐蚀介质的传输通道越多,涂层的耐蚀性越差。
        SiO_2/epoxy resin coatings were prepared by adding nano SiO_2 in epoxy resin coating. The corrosion resistance of SiO_2/epoxy resin coatings was studied by Machu test and electrochemical impedance spectroscopy( EIS). The porosity of the coatings was obtained by analyzing the EIS. The results show that the pure epoxy resin coating added with 0% SiO_2 had the worst corrosion resistance,while the epoxy resin coating added with 10% SiO_2 had the best corrosion resistance. The SiO_2 acted as a barrier shield in epoxy resin coatings,but agglomeration occurred in the epoxy resin coating added with too much SiO_2,which decreased the corrosion resistane of the coating. The larger the porosity of coating,the more the micropores and the larger the micropore areas in the coatings,resulting in more transmission channels for corrosive medium and bad corrosion resistance of SiO_2/epoxy resin coatings.
引文
[1]余美琼.铝及铝合金表面处理技术新进展[J].化学工程与装备,2008(6):84-88.
    [2]刘希燕,蒋健明,陈正涛,等.铝合金防腐保护研究进展[J].现代涂料与涂装,2007,12(10):11-14.
    [3]胡吉明,张鉴清,曹楚南.铝合金表面环氧涂层中水传输行为的电化学阻抗谱研究[J].金属学报,2003,39(5):544-549.
    [4]元辛,岳珠峰,温世峰,等.铝合金表面有机硅环氧涂层的腐蚀电化学行为[J].中国腐蚀与防护学报,2014,34(4):375-381.
    [5]张翠,吴燕,张洋,等.纳米二氧化硅对涂料的改性研究现状[J].林业机械与木工设备,2013,41(8):16-22.
    [6]张卫国,王小燕,姚素薇,等.纳米二氧化硅复合涂料的制备及其性能[J].化工学报,2006,57(11):2745-2749.
    [7]袁睿,于勇.超细二氧化硅微粉在建筑涂料中应用[J].橡塑资源利用,2015(5):11-24.
    [8]钟萍,钟银花,袁兴.纳米二氧化硅改性环氧涂料在建筑护栏中的防护应用[J]. 2014,33(6):243-246.
    [9]陈颖敏,侯玉婧,俞立.改性纳米二氧化硅用于丙烯酸聚氨酯防腐涂料[J].河北大学学报(自然科学版),2012,32(6):613-618.
    [10] TAUBER A,HARTMANN E,H. GLASEI J,et al. UV and electron beam crosslinked polyacrylate nanocomposites and their applications[J]. Czechoslovak Journal of Physics,2003,53(S1):A355-A367.
    [11] CHOU Y C,WANG Y Y,HEIEH T. Transparent photocurable co-polyacrylate/silica nanocomposites prepared by sol-gel process[J]. Journal of Applied Polymer Science,2007,105(4):2073-2082.
    [12] SHARIFI GOLRU S,ATTAR M M,RAMEZANZADEH B. Effects of different surface cleaning procedures on the superficial morphology and the adhesive strength of epoxy coating on aluminium alloy 1050[J]. Progress in Organic Coatings,2015,87:52-60.
    [13] SHARIFI GOLRU S,ATTAR M M,RAMEZANZADEH B. Effects of surface treatment of aluminium alloy 1050on the adhesion and anticorrosion properties of the epoxy coating[J]. Applied Surface Science,2015,345(1):360-368.
    [14] IRIBARREN-MATEOS J I,BUJ-CORRAL I,VIVANCOS-CALVET J,et al. Silane and epoxy coatings:a bilayer system to protect AA2024 alloy[J]. Progress in Organic Coatings,2015,81:47-57.
    [15] SHI H W,HAN E H,LAMAKA S V,et al. Cerium cinnamate as an environmentally benign inhibitor pigment for epoxy coatings on AA 2024-T3[J]. Progress in Organic Coatings,2014,77(4):765-773.
    [16] LU X,ZUO Y,ZHAO X,et al. The study of a Mg-rich epoxy primer for protection of AZ91D magnesium alloy[J]. Corrosion Science,2011,53(1):153-160.
    [17] LU X,ZUO Y,ZHAO X,et al. The improved performance of a Mg-rich epoxy coating on AZ91D magnesium alloy by silane pretreatment[J]. Corrosion Science,2012,60(7):165-172.
    [18] LU X,ZUO Y,ZHAO X,et al. The influence of aluminum tri-polyphosphate on the protective behavior of Mgrich epoxy coating on AZ91D magnesium alloy[J].Electrochimica Acta,2013,93(4):53-64.
    [19] JAGTAP R N,NAMBIAR R,HASSAN S Z,et al. Predictive power for life and residual life of the zinc rich primer coatings with electrical measurement[J]. Progress in Organic Coatings,2007,58(4):253-258.
    [20] JAGTAP R N,PATIL P P,HASSAN S Z. Effect of zinc oxide in combating corrosion in zinc-rich primer[J].Progress in Organic Coatings,2008,63(4):389-394.
    [21] HU J M,ZHANG J Q,CAO C N. Determination of water uptake and diffusion of Cl-ion in epoxy primer on aluminum alloys in Na CI solution by electrochemical impedance spectroscopy[J]. Progress in Organic Coatings,2003,46(4):273-279.
    [22] ZHANG J T,HU J M,ZHANG J Q,et al. Studies of water transport behavior and impedance models of epoxycoated metals in Na CI solution EIS[J]. Progress in Organic Coatings,2004,51(2):145-151.
    [23] MARCHEBOIS H,KEDDAM M,SAVALL C,et al.Zinc-rich powder coatings characterisation in artificial sea water EIS analysis of the galvanic action[J]. Electrochimica Acta,2004,49(11):1719-1729.