20-羟基蜕皮酮调控昆虫先天免疫的分子机制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in the molecular mechanisms underlying the regulation of innate immunity by 20-hydroxyecdysone in insects
  • 作者:王远 ; 张若男 ; 陈雪 ; 顾偌铖 ; 苏睿 ; 钟仰进 ; 杨婉莹
  • 英文作者:WANG Yuan;ZHANG Ruo-Nan;CHEN Xue;GU Ruo-Cheng;SU Rui;ZHONG Yang-Jin;YANG Wan-Ying;Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University;
  • 关键词:昆虫 ; 20-羟基蜕皮酮 ; 先天免疫 ; 细胞免疫 ; 体液免疫 ; 分子机制
  • 英文关键词:Insect;;20-hydroxyecdysone;;innate immunity;;cellular immunity;;hormoral immunity;;molecular mechanisms
  • 中文刊名:KCXB
  • 英文刊名:Acta Entomologica Sinica
  • 机构:华南农业大学动物科学学院广东省农业动物基因组学与分子育种重点实验室;
  • 出版日期:2018-11-20
  • 出版单位:昆虫学报
  • 年:2018
  • 期:v.61
  • 基金:国家自然科学基金青年基金项目(31101765);; 广东省自然科学基金自由申请项目(2015A030313396);; 广东省自然科学基金自由申请项目(2016A030313412);; 国家自然科学基金地区科学基金项目(31760638);; 广东省蚕桑产业技术体系(2018LM1123)
  • 语种:中文;
  • 页:KCXB201811010
  • 页数:12
  • CN:11
  • ISSN:11-1832/Q
  • 分类号:84-95
摘要
昆虫先天免疫(innate immunity)包括细胞免疫(cellular immunity)和体液免疫(humoral immunity)。近年来研究表明,作为昆虫生长发育调节的关键激素之一,20-羟基蜕皮酮(20-hydroxyecdysone, 20E)参与调节了昆虫的先天免疫。本文在介绍昆虫免疫机制的基础上,重点阐述20E调控昆虫先天免疫及微生物影响20E滴度的分子调控机制。20E可以激活细胞免疫和体液免疫来对抗外源入侵微生物,而外源微生物的刺激也会通过3-脱氢蜕皮激素-3β-还原酶(3-dehydroecdysteroid-3β-reductase, 3DE-3β-reductase)促进20E滴度升高。20E对昆虫免疫系统有显著影响,其滴度升高可以激活细胞免疫,包括吞噬(phagocytosis)、包被(encapsulation)和结节(nodulation);而对体液免疫的影响则比较复杂,除可以加速黑化作用(menalization)外,对抗菌肽的表达究竟是促进还是抑制尚不明确。研究人员鉴定发现了一些20E调控体液免疫的关键基因,这些基因的作用途径总结起来可以分为3类:(1)依赖于Toll和IMD等先天免疫通路;(2)依赖于胰岛素(insulin)信号途径;(3)依赖于20E信号通路因子BR-C等的直接调控。但这些通路因子究竟是如何互作以及其分子调控机制等都尚不清楚,值得进一步深入探讨。
        The innate immunity of insects includes cellular immunity and hurmoral immunity. Recent studies have shown that 20-hydroxyecdysone(20 E), one of the key hormones in the regulation of insect growth and development, is involved in the regulation of insect innate immunity. In this article we focus on the molecular mechanisms of 20 E regulating the innate immunity in insects and the influence of microorganisms on 20 E titer based on the mechanisms of insect immunity. 20 E can activate cellular and humoral immunity against invasive microorganisms, and the stimulation of exogenous microorganisms can promote the increase of 20 E titer by 3-dehydroecdysteroid-3β-reductase(3 DE-3β-reductase). 20 E has a significant effect on the immune system of insects, and the increase of its titer can activate cellular immunity, including phagocytosis, encapsulation and nodulation, while the effect on humoral immunity is more complex. Besides accelerating melanization, whether 20 E promotes or inhibits the expression of antimicrobial peptides is not clear yet. Researchers identified a number of key genes through which 20 E regulates humoral immunity, and they can be grouped into three categories according to the pathways they are involved in: the first is dependent on innate immune pathways such as Toll and IMD, the second is dependent on insulin signaling pathways, and the third is the direct regulation by 20 E signaling pathway via such transcription factors as BR-C. However, the way these pathway factors interact with each other and their molecular regulatory mechanisms are still unclear and deserve further study.
引文
Aggrawal K, Silverman N, 2007. Peptidoglycan recognition in Drosophila. Biochem. Soc. Trans., 35(6): 1496-1500.
    Ahmed A, Martin D, Manetti AGO, Mathiopoulos KD, Kafatos FC, Raikhel A, Brey PT, 1999. Genomic structure and ecdysone regulation of the prophenoloxidase 1 gene in the Malaria vector Anopheles gambiae. Proc. Natl. Acad. Sci. USA, 96(26): 14795-14800.
    Anni K, Neal S, 2014. The Drosophila IMD pathway in the activation of the humoral immune response. Dev. Comp. Immunol., 42(1): 25-35.
    Arnot CJ, Gay NJ, Gangloff M, 2010. Molecular mechanism that induces activation of Spätzle, the ligand for the Drosophila Toll receptor. J. Biol. Chem., 285(25): 19502-19509.
    Baudach A, Lee KZ, Vogel H, Vilcinskas A, 2018. Immunological larval polyphenism in the map butterfly Araschnia levana reveals the photoperiodic modulation of immunity. Ecol. Evol., 8(10): 4891-4898.
    Becker T, Loch G, Beyer M, Zinke I, Aschenbrenner AC, Carrera P, Inhester T, Schultze JL, Hoch M, 2010. FOXO-dependent regulation of innate immune homeostasis. Nature, 463(7279): 369-373.
    Beckstead RB, Lam G, Thummel CS, 2005. The genomic response to 20-hydroxyecdysone at the onset of Drosophila metamorphosis. Genome Biol., 6(12): R99.
    Buszczak M, Segraves WA, 2000. Insect metamorphosis: out with the old, in with the new. Curr. Biol., 10(22): R830-R833.
    Castillo JC, Robertson AE, Strand MR, 2006. Characterization of hemocytes from the mosquitoes Anopheles gambiae and Aedes aegypti. Insect Biochem. Molec. Biol., 36(12): 891-903.
    Chai LQ, Miao YC, Wang L, 2015. Effect of 20-hydroxyecdysone on the immune system of Helicoverpa armigera. Sichuan Anim., (5): 739-747. [柴连琴, 苗迎春, 王乐, 2015. 20-羟基蜕皮酮对棉铃虫免疫系统的影响. 四川动物, (5): 739-747]
    Chen JH, Webb TJ, Powls R, Rees HH, 1996. Purification and characterisation of haemolymph 3-dehydroecdysone 3 beta-reductase in relation to ecdysteroid biosynthesis in the cotton leafworm Spodoptera littoralis. Eur. J. Biochem., 242(2): 394-401.
    Chernysh SI, Simonenko NP, Braun A, Meister M, 1995. Developmental variability of the antibacterial response in larvae and pupae of Calliphora vicina (Diptera, Calliphoridae) and Drosophila melanogaster (Diptera, Drosophilidae). Eur. J. Entomol., 92(1): 203-209.
    Dostálová A, Rommelaere S, Poidevin M, Lemaitre B, 2017. Thioester-containing proteins regulate the Toll pathway and play a role in Drosophila defence against microbial pathogens and parasitoid wasps. BMC Biol., 15(1): 79.
    Dostert C, Jouanguy E, Irving P, Troxler L, Galianaarnoux D, Hetru C, Hoffmann JA, Imler JL, 2005. The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of Drosophila. Nat. Immunol., 6(9): 946-953.
    Eijkelenboom A, Burgering BM, 2013. FOXOs: signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol., 14(2): 83-97.
    Enya S, Yamamoto C, Mizuno H, Esaki T, Lin HK, Iga M, Morohashi K, Hirano Y, Kataoka H, Masujima T, Shimada-Niwa Y, Niwa R, 2017. Dual roles of glutathione in ecdysone biosynthesis and antioxidant function during larval development in Drosophila. Genetics, 207(4): 1519-1532.
    Fink C, Hoffmann J, Knop M, Li Y, Isermann K, Roeder T, 2016. Intestinal FoxO signaling is required to survive oral infection in Drosophila. Mucosal Immunol., 9(4): 927-936.
    Flatt T, Heyland A, Rus F, Porpiglia E, Sherlock C, Yamamoto R, Garbuzov A, Palli SR, Tatar M, Silverman N, 2008. Hormonal regulation of the humoral innate immune response in Drosophila melanogaster. J. Exp. Biol., 211(Pt 16): 2712-2724.
    Garver LS, Wu J, Wu LP, 2006. The peptidoglycan recognition protein PGRP-SC1a is essential for Toll signaling and phagocytosis of Staphylococcus aureus in Drosophila. Proc. Natl. Acad. Sci. USA, 103(3): 660-665.
    Gilbert LI, Rybczynski R, Warren JT, 2002. Control and biochemical nature of the ecdysteroidogenic pathway. Annu. Rev. Entomol., 47: 883-916.
    Gordia NA, Nesin AP, Simonenko NP, Aiu I, Chernysh SI, 2011. Neurogenic and septic inductions of synthesis of peptide antibiotics in larvae of Calliphora vicina R.-D. (Diptera: Calliphoridae). J. Evol. Biochem. Physiol., 47(2): 196-203.
    Haine ER, Moret Y, Sivajothy MT, Rolff J, 2008. Antimicrobial defense and persistent infection in insects. Science, 322(5905): 1257-1259.
    Han P, Han J, Fan J, Zhang M, Ma E, Li S, Fan R, Zhang J, 2017. 20-Hydroxyecdysone activates PGRP-SA mediated immune response in Locusta migratoria. Dev. Comp. Immunol., 72: 128-139.
    Jünger MA, Rintelen F, Stocker H, Wasserman JD, Végh M, Radimerski T, Greenberg ME, Hafen E, 2003. The Drosophila Forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J. Biol., 2(3): 20.
    Kayukawa T, Jouraku A, Ito Y, Shinoda T, 2017. Molecular mechanism underlying juvenile hormone-mediated repression of precocious larval-adult metamorphosis. Proc. Natl. Acad. Sci. USA, 114(5): 1057-1062.
    King-Jones K, Thummel CS, 2005. Less steroids make bigger flies. Science, 310(5748): 630-631.
    Kocks C, Cho JH, Nehme N, 2005. Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell, 123(2): 335-346.
    Kola I, Brookes S, Green AR, Garber R, Tymms M, Papas TS, Seth A, 1993. The Ets1 transcription factor is widely expressed during murine embryo development and is associated with mesodermal cells involved in morphogenetic processes such as organ formation. Proc. Natl. Acad. Sci. USA, 90(16): 7588-7592.
    Koolman J, 1989. Steroid biology (Book Reviews: Ecdysone). Science, 246(4934): 1182.
    Lemaitre B, Hoffmann J, 2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol., 25(1): 697-743.
    Levashina EA, Moita LF, Blandin S, Vriend G, Lagueux M, Kafatos FC, 2001. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell, 104(5): 709-718.
    Lundstr?m A, Kang D, Liu G, Fernandez C, Warren JT, Gilbert LI, Steiner H, 2002. A protein from the cabbage looper, Trichoplusia ni, regulated by a bacterial infection is homologous to 3-dehydroecdysone 3beta-reductase. Insect Biochem. Molec. Biol., 32(8): 829-837.
    MacRae TH, 2010. Gene expression, metabolic regulation and stress tolerance during diapause. Cell Mol. Life Sci., 67(14): 2405-2424.
    Mai T, Chen S, Lin X, Zhang X, Zou X, Feng Q, Zheng S, 2017. 20-hydroxyecdysone positively regulates the transcription of the antimicrobial peptide, lebocin, via BmEts and BmBR-C Z4 in the midgut of Bombyx mori during metamorphosis. Dev. Comp. Immunol., 74: 10-18.
    Minakuchi C, Namiki T, Shinoda T, 2009. Krüppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum. Dev. Biol., 325(2): 341-350.
    Muthusamy N, Barton K, Leiden JM, 1995. Defective activation and survival of T cells lacking the Ets-1 transcription factor. Nature, 377(6550): 639-642.
    Nakahara Y, Shimura S, Ueno C, Kanamori Y, Mita K, Kiuchi M, Kamimura M, 2009. Purification and characterization of silkworm hemocytes by flow cytometry. Dev. Comp. Immunol., 33(4): 439-448.
    Nijhout HF, Callier V, 2015. Developmental mechanisms of body size and wing-body scaling in insects. Annu. Rev. Entomol., 60: 141-156.
    Nijhout HF, Mckenna KZ, 2018. The distinct roles of insulin signaling in polyphenic development. Curr. Opin. Insect Sci., 25: 58-64.
    Parthier C, Stelter M, Ursel C, Fandrich U, Lilie H, Breithaupt C, Stubbs MT, 2014. Structure of the Toll-Spatzle complex, a molecular hub in Drosophila development and innate immunity. Proc. Natl. Acad. Sci. USA, 111(17): 6281-6286.
    Ragab A, Buechling T, Gesellchen V, Spirohn K, Boettcher AL, Boutros M, 2011. Drosophila Ras/MAPK signalling regulates innate immune responses in immune and intestinal stem cells. EMBO J., 30(6): 1123-1136.
    Rainford JL, Michael H, Nicholson DB, Mayhew PJ, 2014. Phylogenetic distribution of extant richness suggests metamorphosis is a key innovation driving diversification in insects. PLoS ONE, 9(10): e109085.
    R?met M, Manfruelli P, Pearson A, Matheyprevot B, Ezekowitz RA, 2002. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature, 416(6881): 644-648.
    R?met M, Pearson A, Manfruelli P, Li X, Koziel H, Göbel V, Chung E, Krieger M, Ezekowitz RA, 2001. Drosophila scavenger receptor CI is a pattern recognition receptor for bacteria. Immunity, 15(6): 1027-1038.
    Regan JC, Brandao AS, Leitão AB, Mantas Dias AR, Sucena E, Jacinto A, Zaidman-Rémy A, 2013. Steroid hormone signaling is essential to regulate innate immune cells and fight bacterial infection in Drosophila. PLoS Pathog., 9(10): e1003720.
    Rus F, Flatt T, Tong M, Aggarwal K, Okuda K, Kleino A, Yates E, Tatar M, Silverman N, 2013. Ecdysone triggered PGRP-LC expression controls Drosophila innate immunity. EMBO J., 32(11): 1626-1638.
    Serizier SB, Mccall K, 2017. Scrambled eggs: apoptotic cell clearance by non-professional phagocytes in the Drosophila ovary. Front. Immunol., 8: 1642.
    Sigle LT, Hillyer JF, 2018. Eater and draper are involved in the periostial haemocyte immune response in the mosquito Anopheles gambiae. Insect Mol. Biol., 27(4): 429-438.
    Sorrentino RP, Carton Y, Govind S, 2002. Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated. Dev. Biol., 243(1): 65-80.
    St?ven S, Ando I, Kadalayil L, Engström Y, Hultmark D, 2000. Activation of the Drosophila NF-kappaB factor Relish by rapid endoproteolytic cleavage. EMBO Rep., 1(4): 347-352.
    Su D, Coudriet GM, Hyun KD, Lu Y, Perdomo G, Qu S, Slusher S, Tse HM, Piganelli J, Giannoukakis N, 2009. FoxO1 links insulin resistance to proinflammatory cytokine IL-1beta production in macrophages. Diabetes, 58(11): 2624-2633.
    Sun W, Shen YH, Xiang ZH, Zhang Z, 2009. Advances in research on silkworm antibacterial peptide genes. Sericult. Sci., 35(1): 196-203. [孙伟, 沈以红, 向仲怀, 张泽, 2009. 家蚕抗菌肽基因研究进展. 蚕业科学, 35(1): 196-203]
    Sun W, Shen YH, Zhou LX, Zhang Z, 2016. Ecdysone titer determined by 3DE-3β-reductase enhances the immune response in the silkworm. J. Immunol., 196(4): 1646-1654.
    Suzuki MG, Terada T, Kobayashi M, Shimada T, 1999. Diapause-associated transcription of BmEts, a gene encoding an ETS transcription factor homolog in Bombyx mori. Insect Biochem. Molec. Biol., 29(4): 339-347.
    Tanaka H, Sagisaka A, Fujita K, Furukawa S, Ishibashi J, Yamakawa M, 2012. BmEts upregulates promoter activity of lebocin in Bombyx mori. Insect Biochem. Molec. Biol., 42(7): 474-481.
    Tian L, Guo E, Diao Y, Zhou S, Peng Q, Cao Y, Ling E, Li S, 2010. Genome-wide regulation of innate immunity by juvenile hormone and 20-hydroxyecdysone in the Bombyx fat body. BMC Genomics, 11(1): 549.
    Theopold U, Li D, Fabbri M, Scherfer C, Schmidt O, 2002. The coagulation of insect hemolymph. Cell Mol. Life Sci., 59(2): 363-372.
    Truman JW, Riddiford LM, 2007. The morphostatic actions of juvenile hormone. Insect Biochem. Molec. Biol., 37(8): 761-770.
    Varma D, Bülow MH, Pesch YY, Loch G, Hoch M, 2014. Forkhead, a new cross regulator of metabolism and innate immunity downstream of TOR in Drosophila. J. Insect Physiol., 69: 80-88.
    Verma P, Tapadia MG, 2015. Early gene Broad complex plays a key role in regulating the immune response triggered by ecdysone in the Malpighian tubules of Drosophila melanogaster. Mol. Immunol., 66(2): 325-339.
    Vilcinskas A, Vogel H, 2016. Seasonal phenotype-specific transcriptional reprogramming during metamorphosis in the European map butterfly Araschnia levana. Ecol. Evol., 6(11): 3476-3485.
    Vlisidou I, Wood W, 2015. Drosophila blood cells and their role in immune responses. FEBS J., 282(8): 1368-1382.
    Wago H, 1982. Cellular recognition of foreign materials by Bombyx mori phagocytes: I. Immunocompetent cells. Dev. Comp. Immunol., 6(4): 591-599.
    Wang J, Chen L, Tang L, Zhao H, Liu X, Wang Y, 2014. 20-hydroxyecdysone transcriptionally regulates humoral immunity in the fat body of Helicoverpa armigera. Insect Mol. Biol., 23(6): 842-856.
    Watson FL, Püttmann-Holgado R, Thomas F, Lamar DL, Hughes M, Kondo M, Rebel VI, Schmucker D, 2005. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science, 309(5742): 1874-1878.
    Williams MJ, 2007. Drosophila hemopoiesis and cellular immunity. J. Immunol., 178(8): 4711-4716.
    Wu YS, Chang CH, Nan FH, 2016. Steroid hormone "cortisone" and "20-hydroxyecdysone" involved in the non-specific immune responses of white shrimp (Litopenaeus vannamei). Fish Shellfish Immunol., 56: 272-277.
    Yang HJ, Liu XJ, Fang Z, Hu JB, Li XH, Sun CG, Malik FA, Niu YS, Miao YG, 2011. Cloning and expression pattern of 3-dehydroecdysone 3β-reductase (3DE 3β-reductase) from the silkworm, Bombyx mori L. Arch. Insect Biochem. Physiol., 76(1): 55-66.
    Zeng BJ, Feng QL, 2014. Study on metamorphosis development of Insects. J. Appl. Entomol., 51(2): 317-328. [曾保娟, 冯启理, 2014. 昆虫的变态发育研究. 应用昆虫学报, 51(2): 317-328]
    Zhang T, Song W, Li Z, Qian W, Wei L, Yang Y, Wang W, Zhou X, Meng M, Peng J, 2018. Krüppel homolog 1 represses insect ecdysone biosynthesis by directly inhibiting the transcription of steroidogenic enzymes. Proc. Natl. Acad. Sci. USA, 115(15): 3960-3965.
    Zhang Z, Palli SR, 2009. Identification of a cis-regulatory element required for 20-hydroxyecdysone enhancement of antimicrobial peptide gene expression in Drosophila melanogaster. Insect Mol. Biol., 18(5): 595-605.
    Zhuo XR, Chen L, Wang GJ, Liu XS, Wang YF, Liu K, Yu XQ, Wang JL, 2017. 20-Hydroxyecdysone promotes release of GBP-binding protein from oenocytoids to suppress hemocytic encapsulation. Insect Biochem. Molec. Biol., 92: 53-64.