The role of genomic structural variation in the genetic improvement of polyploid crops
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The role of genomic structural variation in the genetic improvement of polyploid crops
  • 作者:Sarah-Veronica ; Schiessl ; Elvis ; Katche ; Elizabeth ; Ihien ; Harmeet ; Singh ; Chawla ; Annaliese ; S.Mason
  • 英文作者:Sarah-Veronica Schiessl;Elvis Katche;Elizabeth Ihien;Harmeet Singh Chawla;Annaliese S.Mason;Department of Plant Breeding, Justus Liebig University;
  • 英文关键词:Presence–absence variation;;Copy-number variation;;Homeologous exchanges;;Genome structure;;Pan-genome
  • 中文刊名:CROP
  • 英文刊名:作物学报(英文版)
  • 机构:Department of Plant Breeding, Justus Liebig University;
  • 出版日期:2019-04-15
  • 出版单位:The Crop Journal
  • 年:2019
  • 期:v.7
  • 基金:supported by the Deutsche Forschungsgemeinschaft(MA6473/1-1,MA6473/2-1)
  • 语种:英文;
  • 页:CROP201902002
  • 页数:14
  • CN:02
  • ISSN:10-1112/S
  • 分类号:3-16
摘要
Many of our major crop species are polyploids, containing more than one genome or set of chromosomes. Polyploid crops present unique challenges, including difficulties in genome assembly, in discriminating between multiple gene and sequence copies, and in genetic mapping, hindering use of genomic data for genetics and breeding. Polyploid genomes may also be more prone to containing structural variation, such as loss of gene copies or sequences(presence–absence variation) and the presence of genes or sequences in multiple copies(copynumber variation). Although the two main types of genomic structural variation commonly identified are presence–absence variation and copy-number variation, we propose that homeologous exchanges constitute a third major form of genomic structural variation in polyploids. Homeologous exchanges involve the replacement of one genomic segment by a similar copy from another genome or ancestrally duplicated region, and are known to be extremely common in polyploids. Detecting all kinds of genomic structural variation is challenging, but recent advances such as optical mapping and long-read sequencing offer potential strategies to help identify structural variants even in complex polyploid genomes. All three major types of genomic structural variation(presence–absence, copy-number, and homeologous exchange) are now known to influence phenotypes in crop plants, with examples of flowering time, frost tolerance, and adaptive and agronomic traits. In this review,we summarize the challenges of genome analysis in polyploid crops, describe the various types of genomic structural variation and the genomics technologies and data that can be used to detect them, and collate information produced to date related to the impact of genomic structural variation on crop phenotypes. We highlight the importance of genomic structural variation for the future genetic improvement of polyploid crops.
        Many of our major crop species are polyploids, containing more than one genome or set of chromosomes. Polyploid crops present unique challenges, including difficulties in genome assembly, in discriminating between multiple gene and sequence copies, and in genetic mapping, hindering use of genomic data for genetics and breeding. Polyploid genomes may also be more prone to containing structural variation, such as loss of gene copies or sequences(presence–absence variation) and the presence of genes or sequences in multiple copies(copynumber variation). Although the two main types of genomic structural variation commonly identified are presence–absence variation and copy-number variation, we propose that homeologous exchanges constitute a third major form of genomic structural variation in polyploids. Homeologous exchanges involve the replacement of one genomic segment by a similar copy from another genome or ancestrally duplicated region, and are known to be extremely common in polyploids. Detecting all kinds of genomic structural variation is challenging, but recent advances such as optical mapping and long-read sequencing offer potential strategies to help identify structural variants even in complex polyploid genomes. All three major types of genomic structural variation(presence–absence, copy-number, and homeologous exchange) are now known to influence phenotypes in crop plants, with examples of flowering time, frost tolerance, and adaptive and agronomic traits. In this review,we summarize the challenges of genome analysis in polyploid crops, describe the various types of genomic structural variation and the genomics technologies and data that can be used to detect them, and collate information produced to date related to the impact of genomic structural variation on crop phenotypes. We highlight the importance of genomic structural variation for the future genetic improvement of polyploid crops.
引文
[1]J.A.Udall,J.F.Wendel,Polyploidy and crop improvement,Crop Sci.46(2006)S3-S14.
    [2]J.Ramsey,D.W.Schemske,Pathways,mechanisms,and rates of polyploid formation in flowering plants,Annu.Rev.Ecol.Syst.29(1998)467-501.
    [3]B.Chalhoub,F.Denoeud,S.Liu,I.A.P.Parkin,H.Tang,X.Wang,J.Chiquet,H.Belcram,C.Tong,B.Samans,M.Correa,C.Da Silva,J.Just,C.Falentin,C.S.Koh,I.Le Clainche,M.Bernard,P.Bento,B.Noel,K.Labadie,A.Alberti,M.Charles,D.Arnaud,H.Guo,C.Daviaud,S.Alamery,K.Jabbari,M.Zhao,P.P.Edger,H.Chelaifa,D.Tack,G.Lassalle,I.Mestiri,N.Schnel,M.C.Le Paslier,G.Fan,V.Renault,P.E.Bayer,A.A.Golicz,S.Manoli,T.H.Lee,V.H.D.Thi,S.Chalabi,Q.Hu,C.Fan,R.Tollenaere,Y.Lu,C.Battail,J.Shen,C.H.D.Sidebottom,A.Canaguier,A.Chauveau,A.Berard,G.Deniot,M.Guan,Z.Liu,F.Sun,Y.P.Lim,E.Lyons,C.D.Town,I.Bancroft,J.Meng,J.Ma,J.C.Pires,G.J.King,D.Brunel,R.Delourme,M.Renard,J.M.Aury,K.L.Adams,J.Batley,R.J.Snowdon,J.Tost,D.Edwards,Y.Zhou,W.Hua,A.G.Sharpe,A.H.Paterson,C.Guan,P.Wincker,Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome,Science 345(2014)950-953.
    [4]C.Parisod,K.Alix,J.Just,M.Petit,V.Sarilar,C.Mhiri,M.Ainouche,B.Chalhoub,M.A.Grandbastien,Impact of transposable elements on the organization and function of allopolyploid genomes,New Phytol.186(2010)37-45.
    [5]P.S.Soltis,D.B.Marchant,Y.Van de Peer,D.E.Soltis,Polyploidy and genome evolution in plants,Curr.Opin.Genet.Dev.35(2015)119-125.
    [6]L.Comai,The advantages and disadvantages of being polyploid,Nat.Rev.Genet.6(2005)836-846.
    [7]A.R.Leitch,I.J.Leitch,Genomic plasticity and the diversity of polyploid plants,Science 320(2008)481-483.
    [8]K.L.Adams,J.F.Wendel,Polyploidy and genome evolution in plants,Curr.Opin.Plant Biol.8(2005)135-141.
    [9]L.Chaney,A.R.Sharp,C.R.Evans,J.A.Udall,Genome mapping in plant comparative genomics,Trends Plant Sci.21(2016)770-780.
    [10]M.Morgante,E.De Paoli,S.Radovic,Transposable elements and the plant pan-genomes,Curr.Opin.Plant Biol.10(2007)149-155.
    [11]B.Piegu,R.Guyot,N.Picault,A.Roulin,A.Saniyal,H.Kim,K.Collura,D.S.Brar,S.Jackson,R.A.Wing,O.Panaud,Doubling genome size without polyploidization:dynamics of retrotransposition-driven genomic expansions in Oryza australiensis,a wild relative of rice,Genome Res.16(2006)1262-1269.
    [12]F.Marroni,S.Pinosio,M.Morgante,Structural variation and genome complexity:is dispensable really dispensable?Curr.Opin.Plant Biol.18(2014)31-36.
    [13]M.Iovene,T.Zhang,Q.F.Lou,C.R.Buell,J.M.Jiang,Copy number variation in potato-an asexually propagated autotetraploid species,Plant J.75(2013)80-89.
    [14]R.K.Saxena,D.Edwards,R.K.Varshney,Structural variations in plant genomes,Brief.Funct.Genomics 13(2014)296-307.
    [15]M.Zarrei,J.R.MacDonald,D.Merico,S.W.Scherer,A copy number variation map of the human genome,Nat.Rev.Genet.16(2015)172-183.
    [16]F.Zhang,W.L.Gu,M.E.Hurles,J.R.Lupski,Copy number variation in human health,disease,and evolution,Annu.Rev.Genomics Hum.Genet.10(2009)451-481.
    [17]D.F.Conrad,D.Pinto,R.Redon,L.Feuk,O.Gokcumen,Y.J.Zhang,J.Aerts,T.D.Andrews,C.Barnes,P.Campbell,T.Fitzgerald,M.Hu,C.H.Ihm,K.Kristiansson,D.G.MacArthur,J.R.MacDonald,I.Onyiah,A.W.C.Pang,S.Robson,K.Stirrups,A.Valsesia,K.Walter,J.Wei,C.Tyler-Smith,N.P.Carter,C.Lee,S.W.Scherer,M.E.Hurles,W.T.C.Control,Origins and functional impact of copy number variation in the human genome,Nature 464(2010)704-712.
    [18]A.?mieńko,A.Samelak,P.Koz?owski,M.Figlerowicz,Copy number polymorphism in plant genomes,Theor.Appl.Genet.127(2014)1-18.
    [19]W.Gu,F.Zhang,J.R.Lupski,Mechanisms for human genomic rearrangements,PathoGenetics 1(2008)4.
    [20]N.M.Springer,K.Ying,Y.Fu,T.M.Ji,C.T.Yeh,Y.Jia,W.Wu,T.Richmond,J.Kitzman,H.Rosenbaum,A.L.Iniguez,W.B.Barbazuk,J.A.Jeddeloh,D.Nettleton,P.S.Schnable,Maize inbreds exhibit high levels of copy number variation(CNV)and presence/absence variation(PAV)in genome content,PLoS Genet.5(2009),e1000734.
    [21]J.Cao,K.Schneeberger,S.Ossowski,T.Gunther,S.Bender,J.Fitz,D.Koenig,C.Lanz,O.Stegle,C.Lippert,X.Wang,F.Ott,J.Muller,C.Alonso-Blanco,K.Borgwardt,K.J.Schmid,D.Weigel,Whole-genome sequencing of multiple Arabidopsis thaliana populations,Nat.Genet.43(2011)956-963.
    [22]P.Yu,C.H.Wang,Q.Xu,Y.Feng,X.P.Yuan,H.Y.Yu,Y.P.Wang,S.X.Tang,X.H.Wei,Detection of copy number variations in rice using array-based comparative genomic hybridization,BMC Genomics 12(2011)372.
    [23]B.Hurgobin,A.Golicz Agnieszka,E.Bayer Philipp,K.Chan Chon-Kit,S.Tirnaz,A.Dolatabadian,V.Schiessl Sarah,B.Samans,D.Montenegro Juan,A.P.Parkin Isobel,J.C.Pires,B.Chalhoub,J.King Graham,R.Snowdon,J.Batley,D.Edwards,Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus,Plant Biotechnol.J.16(2018)1265-1274.
    [24]S.V.Schiessl,B.Huettel,D.Kuehn,R.Reinhardt,R.J.Snowdon,Post-polyploidisation morphotype diversification associates with gene copy number variation,Sci.Rep.7(2017),41845.
    [25]A.Díaz,M.Zikhali,A.S.Turner,P.Isaac,D.A.Laurie,Copy number variation affecting the photoperiod-B1 and vernalization-A1 genes is associated with altered flowering time in wheat(Triticum aestivum),PLoS One 7(2012),e33234.
    [26]D.E.Cook,T.G.Lee,X.L.Guo,S.Melito,K.Wang,A.M.Bayless,J.P.Wang,T.J.Hughes,D.K.Willis,T.E.Clemente,B.W.Diers,J.M.Jiang,M.E.Hudson,A.F.Bent,Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean,Science 338(2012)1206-1209.
    [27]T.Würschum,P.H.G.Boeven,S.M.Langer,C.F.H.Longin,W.L.Leiser,Multiply to conquer:copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat,BMC Genet.16(2015)96.
    [28]S.M.Langer,C.F.H.Longinand,T.Wurschum,Flowering time control in European winter wheat,Front.Plant Sci.5(2014)537.
    [29]C.Saintenac,D.Y.Jiang,S.C.Wang,E.Akhunov,Sequencebased mapping of the polyploid wheat genome,Genes Genome Genet.3(2013)1105-1114.
    [30]C.Chang,J.Lu,H.P.Zhang,C.X.Ma,G.L.Sun,Copy number variation of cytokinin oxidase gene tackx4 associated with grain weight and chlorophyll content of flag leaf in common wheat,PLoS One 10(2015),e0145970.
    [31]A.N.Sieber,C.F.H.Longin,W.L.Leiser,T.Würschum,Copy number variation of CBF-A14 at the Fr-A2 locus determines frost tolerance in winter durum wheat,Theor.Appl.Genet.129(2016)1087-1097.
    [32]S.V.Schiessl,B.Huettel,D.Kuehn,R.Reinhardt,R.J.Snowdon,Flowering time gene variation in Brassica species shows evolutionary principles,Front.Plant Sci.8(2017)1742.
    [33]S.F?rster,E.Schumann,M.Baumann,W.E.Weber,K.Pillen,Copy number variation of chromosome 5A and its association with Q gene expression,morphological aberrations,and agronomic performance of winter wheat cultivars,Theor.Appl.Genet.126(2013)3049-3063.
    [34]J.Ding,H.Araki,Q.Wang,P.Zhang,S.Yang,J.Q.Chen,D.Tian,Highly asymmetric rice genomes,BMC Genomics 8(2007)154.
    [35]J.D.Montenegro,A.A.Golicz,P.E.Bayer,B.Hurgobin,H.Lee,C.-K.K.Chan,P.Visendi,K.Lai,J.Dole?el,J.Batley,D.Edwards,The pangenome of hexaploid bread wheat,Plant J.90(2017)1007-1013.
    [36]S.Brunner,K.Fengler,M.Morgante,S.Tingey,A.Rafalski,Evolution of DNA sequence nonhomologies among maize inbreds,Plant Cell 17(2005)343-360.
    [37]B.Contreras-Moreira,C.P.Cantalapiedra,M.J.Garcia-Pereira,S.P.Gordon,J.P.Vogel,E.Igartua,A.M.Casas,P.Vinuesa,Analysis of plant pan-genomes and transcriptomes with GET_HOMOLOGUES-EST,a clustering solution for sequences of the same species,Front.Plant Sci.8(2017)184.
    [38]M.X.Zhao,B.A.Zhang,D.Lisch,J.X.Ma,Patterns and consequences of subgenome differentiation provide insights into the nature of paleopolyploidy in plants,Plant Cell29(2017)2974-2994.
    [39]M.A.Hardigan,F.P.E.Laimbeer,L.Newton,E.Crisovan,J.P.Hamilton,B.Vaillancourt,K.Wiegert-Rininger,J.C.Wood,D.S.Douches,E.M.Farre,R.E.Veilleux,C.R.Buell,Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato,Proc.Natl.Acad.Sci.U.S.A.114(2017)E9999-E10008.
    [40]S.Griffiths,R.Sharp,T.N.Foote,I.Bertin,M.Wanous,S.Reader,I.Colas,G.Moore,Molecular characterization of Ph1as a major chromosome pairing locus in polyploid wheat,Nature 439(2006)749-752.
    [41]T.C.Osborn,D.V.Butrulle,A.G.Sharpe,K.J.Pickering,I.A.Parkin,J.S.Parker,D.J.Lydiate,Detection and effects of a homeologous reciprocal transposition in Brassica napus,Genetics 165(2003)1569-1577.
    [42]S.D.Nicolas,G.Le Mignon,F.Eber,O.Coriton,H.Monod,V.Clouet,V.Huteau,A.Lostanlen,R.Delourme,B.Chalhoub,C.D.Ryder,A.M.Chèvre,E.Jenczewski,Homeologous recombination plays a major role in chromosome rearrangements that occur during meiosis of Brassica napus haploids,Genetics175(2007)487-503.
    [43]R.T.Gaeta,J.C.Pires,Homoelogous recombination in allopolyploids:the polyploid ratchet,New Phytol.186(2010)18-28.
    [44]A.S.Mason,P.Chauhan,S.Banga,S.S.Banga,P.Salisbury,M.J.Barbetti,J.Batley,Agricultural selection and presenceabsence variation in spring-type canola germplasm,Crop Pasture Sci.69(2018)55-64.
    [45]R.Cronn,R.L.Small,T.Haselkorn,J.F.Wendel,Cryptic repeated genomic recombination during speciation in Gossypium gossypioides,Evolution 57(2003)2475-2489.
    [46]L.H.Rieseberg,S.C.Kim,R.A.Randell,K.D.Whitney,B.L.Gross,C.Lexer,K.Clay,Hybridization and the colonization of novel habitats by annual sunflowers,Genetica 129(2007)149-165.
    [47]K.Y.Lim,D.E.Soltis,P.S.Soltis,J.Tate,R.Matyasek,H.Srubarova,A.Kovarik,J.C.Pires,Z.Y.Xiong,A.R.Leitch,Rapid chromosome evolution in recently formed polyploids in Tragopogon(Asteraceae),PLoS One 3(2008),e3353.
    [48]R.J.A.Buggs,A.N.Doust,J.A.Tate,J.Koh,K.Soltis,F.A.Feltus,A.H.Paterson,P.S.Soltis,D.E.Soltis,Gene loss and silencing in Tragopogon miscellus(Asteraceae):comparison of natural and synthetic allotetraploids,Heredity 103(2009)73-81.
    [49]J.A.Udall,P.A.Quijada,T.C.Osborn,Detection of chromosomal rearrangements derived from homeologous recombination in four mapping populations of Brassica napus L,Genetics 169(2005)967-979.
    [50]A.Stein,O.Coriton,M.Rousseau-Gueutin,B.Samans,S.V.Schiessl,C.Obermeier,I.A.P.Parkin,A.M.Chevre,R.J.Snowdon,Mapping of homoeologous chromosome exchanges influencing quantitative trait variation in Brassica napus,Plant Biotechnol.J.15(2017)1478-1489.
    [51]A.Lloyd,A.Blary,D.Charif,C.Charpentier,J.Tran,S.Balzergue,E.Delannoy,G.Rigaill,E.Jenczewski,Homoeologous exchanges cause extensive dosagedependent gene expression changes in an allopolyploid crop,New Phytol.217(2018)367-377.
    [52]S.Renny-Byfield,J.F.Wendel,Doubling down on genomes:polyploidy and crop plants,Am.J.Bot.101(2014)1711-1725.
    [53]S.Wang,J.D.Chen,W.P.Zhang,Y.Hu,L.J.Chang,L.Fang,Q.Wang,F.N.Lv,H.T.Wu,Z.F.Si,S.Q.Chen,C.P.Cai,X.F.Zhu,B.L.Zhou,W.Z.Guo,T.Z.Zhang,Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes,Genome Biol.16(2015)108.
    [54]D.Fu,A.S.Mason,M.Xiao,H.Yan,Effects of genome structure variation,homeologous genes and repetitive DNAon polyploid crop research in the age of genomics,Plant Sci.242(2016)37-46.
    [55]A.H.Paterson,J.E.Bowers,M.D.Burow,X.Draye,C.G.Elsik,C.-X.Chiang,C.S.Katsar,T.H.Lan,Y.-R.Lin,R.Ming,R.J.Wright,Comparative genomics of plant chromosomes,Plant Cell 12(2000)1523-1539.
    [56]D.Edwards,J.Batley,R.J.Snowdon,Accessing complex crop genomes with next-generation sequencing,Theor.Appl.Genet.126(2013)1-11.
    [57]P.E.Bayer,P.Ruperao,A.S.Mason,J.Stiller,C.K.K.Chan,S.Hayashi,Y.Long,J.Meng,T.Sutton,P.Visendi,R.K.Varshney,J.Batley,D.Edwards,High-resolution skim genotyping by sequencing reveals the distribution of crossovers and gene conversions in Cicer arietinum and Brassica napus,Theor.Appl.Genet.128(2015)1039-1047.
    [58]Q.-H.Zhou,D.-H.Fu,A.S.Mason,Y.-J.Zeng,C.-X.Zhao,Y.-J.Huang,In silico integration of quantitative trait loci for seed yield and yield-related traits in Brassica napus,Mol.Breed.33(2014)881-894.
    [59]M.Imelfort,C.Duran,J.Batley,D.Edwards,Discovering genetic polymorphisms in next-generation sequencing data,Plant Biotechnol.J.7(2009)312-317.
    [60]R.E.Oliver,G.R.Lazo,J.D.Lutz,M.J.Rubenfield,N.A.Tinker,J.M.Anderson,N.H.W.Morehead,D.Adhikary,E.N.Jellen,P.J.Maughan,G.L.B.Guedira,S.M.Chao,A.D.Beattie,M.L.Carson,H.W.Rines,D.E.Obert,J.M.Bonman,E.W.Jackson,Model SNPdevelopment for complex genomes based on hexaploid oat using high-throughput 454 sequencing technology,BMCGenomics 12(2011)77.
    [61]K.T.Lai,C.Duran,P.J.Berkman,M.T.Lorenc,J.Stiller,S.Manoli,M.J.Hayden,K.L.Forrest,D.Fleury,U.Baumann,M.Zander,A.S.Mason,J.Batley,D.Edwards,Single nucleotide polymorphism discovery from wheat nextgeneration sequence data,Plant Biotechnol.J.10(2012)743-749.
    [62]D.J.Bertioli,P.Ozias-Akins,Y.Chu,K.M.Dantas,S.P.Santos,E.Gouvea,P.M.Guimaraes,S.C.M.Leal-Bertioli,S.J.Knapp,M.C.Moretzsohn,The use of SNP markers for linkage mapping in diploid and tetraploid peanuts,Genes Genome Genet.4(2014)89-96.
    [63]J.Clevenger,C.Chavarro,S.A.Pearl,P.Ozias-Akins,S.A.Jackson,Single nucleotide polymorphism identification in polyploids:a review,example,and recommendations,Mol.Plant 8(2015)831-846.
    [64]A.Rasheed,Y.F.Hao,X.C.Xia,A.Khan,Y.B.Xu,R.K.Varshney,Z.H.He,Crop breeding chips and genotyping platforms:progress,challenges,and perspectives,Mol.Plant10(2017)1047-1064.
    [65]I.Gabur,H.S.Chawla,X.Liu,V.Kumar,S.Faure,A.von Tiedemann,C.Jestin,E.Dryzska,S.Volkmann,F.Breuer,R.Delourme,R.Snowdon,C.Obermeier,Finding invisible quantitative trait loci with missing data,Plant Biotechnol.J.(2018)https://doi.org/10.1111/pbi.12942.
    [66]A.S.Mason,E.E.Higgins,R.J.Snowdon,J.Batley,A.Stein,C.Werner,I.A.P.Parkin,A user guide to the Brassica 60KIllumina Infinium(TM)SNP genotyping array,Theor.Appl.Genet.130(2017)621-633.
    [67]M.Lynch,A.Force,The probability of duplicate gene preservation by subfunctionalization,Genetics 154(2000)459-473.
    [68]B.C.Y.Collard,M.Z.Z.Jahufer,J.B.Brouwer,E.C.K.Pang,An introduction to markers,quantitative trait loci(QTL)mapping and marker-assisted selection for crop improvement:the basic concepts,Euphytica 142(2005)169-196.
    [69]S.Akama,R.Shimizu-Inatsugi,K.K.Shimizu,J.Sese,Genome-wide quantification of homeolog expression ratio revealed nonstochastic gene regulation in synthetic allopolyploid Arabidopsis,Nucleic Acids Res.42(2014)e46.
    [70]A.S.Mason,J.Takahira,C.Atri,B.Samans,A.Hayward,W.A.Cowling,J.Batley,M.N.Nelson,Microspore culture reveals complex meiotic behaviour in a trigenomic Brassica hybrid,BMC Plant Biol.15(2015)173.
    [71]A.S.Mason,J.Batley,P.E.Bayer,A.Hayward,W.A.Cowling,M.N.Nelson,High-resolution molecular karyotyping uncovers pairing between ancestrally related Brassica chromosomes,New Phytol.202(2014)964-974.
    [72]T.G.Lee,B.W.Diers,M.E.Hudson,An efficient method for measuring copy number variation applied to improvement of nematode resistance in soybean,Plant J.88(2016)143-153.
    [73]H.Staňková,A.R.Hastie,S.Chan,J.Vrána,Z.Tulpová,M.Kubaláková,P.Visendi,S.Hayashi,M.Luo,J.Batley,D.Edwards,J.Dole?el,H.?imková,BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes,Plant Biotechnol.J.14(2016)1523-1531.
    [74]Y.Jiao,P.Peluso,J.Shi,T.Liang,M.C.Stitzer,B.Wang,M.S.Campbell,J.C.Stein,X.Wei,C.-S.Chin,K.Guill,M.Regulski,S.Kumari,A.Olson,J.Gent,K.L.Schneider,T.K.Wolfgruber,M.R.May,N.M.Springer,E.Antoniou,W.R.McCombie,G.G.Presting,M.McMullen,J.Ross-Ibarra,R.K.Dawe,A.Hastie,D.R.Rank,D.Ware,Improved maize reference genome with single-molecule technologies,Nature 546(2017)524-527.
    [75]T.P.Michael,F.Jupe,F.Bemm,S.T.Motley,J.P.Sandoval,C.Lanz,O.Loudet,D.Weigel,J.R.Ecker,High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell,Nat.Commun.9(2018)541.
    [76]F.Jupe,A.C.Rivkin,T.P.Michael,M.Zander,T.S.Motley,J.P.Sandoval,K.R.Slotkin,H.Chen,R.Castagnon,J.R.Nery,J.R.Ecker,The Complex Architecture of Plant Transgene Insertions,bioRxiv,2018 https://doi.org/10.1101/282772.
    [77]Y.Yuan,Z.Milec,P.E.Bayer,J.Vrana,J.Dolezel,D.Edwards,W.Erskine,P.Kaur,Large-Scale Structural Variation Detection in Subterranean Clover Subtypes Using Optical Mapping Validated at Nucleotide Level,bioRxiv,2017 https://doi.org/10.1101/232132.
    [78]A.V.Zimin,D.Puiu,R.Hall,S.Kingan,B.J.Clavijo,S.L.Salzberg,The first near-complete assembly of the hexaploid bread wheat genome,Triticum aestivum,GigaScience 6(2017)1-7.
    [79]M.H.W.Schmidt,A.Vogel,A.K.Denton,B.Istace,A.Wormit,H.van de Geest,M.E.Bolger,S.Alseekh,J.Ma?,C.Pfaff,U.Schurr,R.Chetelat,F.Maumus,J.-M.Aury,S.Koren,A.R.Fernie,D.Zamir,A.M.Bolger,B.Usadel,De novo assembly of a new Solanum pennellii accession using nanopore sequencing,Plant Cell 29(2017)2336-2348.
    [80]M.Schirmer,R.D'Amore,U.Z.Ijaz,N.Hall,C.Quince,Illumina error profiles:resolving fine-scale variation in metagenomic sequencing data,BMC Bioinf.17(2016)125.
    [81]F.W.Li,A.Harkess,A guide to sequence your favorite plant genomes,Appl.Plant Sci.6(2018),e1030.
    [82]A.A.Golicz,P.E.Bayer,G.C.Barker,P.P.Edger,H.Kim,P.A.Martinez,C.K.K.Chan,A.Severn-Ellis,W.R.McCombie,I.A.P.Parkin,A.H.Paterson,J.C.Pires,A.G.Sharpe,H.Tang,G.R.Teakle,C.D.Town,J.Batley,D.Edwards,The pangenome of an agronomically important crop plant Brassica oleracea,Nat.Commun.7(2016),13390.
    [83]W.Yao,G.Li,H.Zhao,G.Wang,X.Lian,W.Xie,Exploring the rice dispensable genome using a metagenome-like assembly strategy,Genome Biol.16(2015)187.
    [84]S.A.Goff,A draft sequence of the rice genome(Oryza sativa L.ssp.japonica),Science 296(2002)92-100.
    [85]P.S.Schnable,D.Ware,R.S.Fulton,J.C.Stein,F.Wei,S.Pasternak,C.Liang,J.Zhang,L.Fulton,T.A.Graves,P.Minx,A.D.Reily,L.Courtney,S.S.Kruchowski,C.Tomlinson,C.Strong,K.Delehaunty,C.Fronick,B.Courtney,S.M.Rock,E.Belter,F.Du,K.Kim,R.M.Abbott,M.Cotton,A.Levy,P.Marchetto,K.Ochoa,S.M.Jackson,B.Gillam,W.Chen,L.Yan,J.Higginbotham,M.Cardenas,J.Waligorski,E.Applebaum,L.Phelps,J.Falcone,K.Kanchi,T.Thane,A.Scimone,N.Thane,J.Henke,T.Wang,J.Ruppert,N.Shah,K.Rotter,J.Hodges,E.Ingenthron,M.Cordes,S.Kohlberg,J.Sgro,B.Delgado,K.Mead,A.Chinwalla,S.Leonard,K.Crouse,K.Collura,D.Kudrna,J.Currie,R.He,A.Angelova,S.Rajasekar,T.Mueller,R.Lomeli,G.Scara,A.Ko,K.Delaney,M.Wissotski,G.Lopez,D.Campos,M.Braidotti,E.Ashley,W.Golser,H.Kim,S.Lee,J.Lin,Z.Dujmic,W.Kim,J.Talag,A.Zuccolo,C.Fan,A.Sebastian,M.Kramer,L.Spiegel,L.Nascimento,T.Zutavern,B.Miller,C.Ambroise,S.Muller,W.Spooner,A.Narechania,L.Ren,S.Wei,S.Kumari,B.Faga,M.J.Levy,L.McMahan,P.van Buren,M.W.Vaughn,K.Ying,C.T.Yeh,S.J.Emrich,Y.Jia,A.Kalyanaraman,A.P.Hsia,W.B.Barbazuk,R.S.Baucom,T.P.Brutnell,N.C.Carpita,C.Chaparro,J.M.Chia,J.M.Deragon,J.C.Estill,Y.Fu,J.A.Jeddeloh,Y.Han,H.Lee,P.Li,D.R.Lisch,S.Liu,Z.Liu,D.H.Nagel,M.C.McCann,P.SanMiguel,A.M.Myers,D.Nettleton,J.Nguyen,B.W.Penning,L.Ponnala,K.L.Schneider,D.C.Schwartz,A.Sharma,C.Soderlund,N.M.Springer,Q.Sun,H.Wang,M.Waterman,R.Westerman,T.K.Wolfgruber,L.Yang,Y.Yu,L.Zhang,S.Zhou,Q.Zhu,J.L.Bennetzen,R.K.Dawe,J.Jiang,N.Jiang,G.G.Presting,S.R.Wessler,S.Aluru,R.A.Martienssen,S.W.Clifton,W.R.McCombie,R.A.Wing,R.K.Wilson,The B73 maize genome:complexity,diversity,and dynamics,Science 326(2009)1112-1115.
    [86]A.H.Paterson,J.E.Bowers,R.Bruggmann,I.Dubchak,J.Grimwood,H.Gundlach,G.Haberer,U.Hellsten,T.Mitros,A.Poliakov,J.Schmutz,M.Spannagl,H.B.Tang,X.Y.Wang,T.Wicker,A.K.Bharti,J.Chapman,F.A.Feltus,U.Gowik,I.V.Grigoriev,E.Lyons,C.A.Maher,M.Martis,A.Narechania,R.P.Otillar,B.W.Penning,A.A.Salamov,Y.Wang,L.F.Zhang,N.C.Carpita,M.Freeling,A.R.Gingle,C.T.Hash,B.Keller,P.Klein,S.Kresovich,M.C.McCann,R.Ming,D.G.Peterson,D.Ware Mehboob-ur-Rahman,P.Westhoff,K.F.X.Mayer,J.Messing,D.S.Rokhsar,The Sorghum bicolor genome and the diversification of grasses,Nature 457(2009)551-556.
    [87]S.Huang,R.Li,Z.Zhang,L.Li,X.Gu,W.Fan,W.J.Lucas,X.Wang,B.Xie,P.Ni,Y.Ren,H.Zhu,J.Li,K.Lin,W.Jin,Z.Fei,G.Li,J.Staub,A.Kilian,E.A.G.van der Vossen,Y.Wu,J.Guo,J.He,Z.Jia,Y.Ren,G.Tian,Y.Lu,J.Ruan,W.Qian,M.Wang,Q.Huang,B.Li,Z.Xuan,J.Cao,Z.Wu Asan,J.Zhang,Q.Cai,Y.Bai,B.Zhao,Y.Han,Y.Li,X.Li,S.Wang,Q.Shi,S.Liu,W.K.Cho,J.-Y.Kim,Y.Xu,K.Heller-Uszynska,H.Miao,Z.Cheng,S.Zhang,J.Wu,Y.Yang,H.Kang,M.Li,H.Liang,X.Ren,Z.Shi,M.Wen,M.Jian,H.Yang,G.Zhang,Z.Yang,R.Chen,S.Liu,J.Li,L.Ma,H.Liu,Y.Zhou,J.Zhao,X.Fang,G.Li,L.Fang,Y.Li,D.Liu,H.Zheng,Y.Zhang,N.Qin,Z.Li,G.Yang,S.Yang,L.Bolund,K.Kristiansen,H.Zheng,S.Li,X.Zhang,H.Yang,J.Wang,R.Sun,B.Zhang,S.Jiang,J.Wang,Y.Du,S.Li,The genome of the cucumber,Cucumis sativus L,Nat.Genet.41(2009)1275-1281.
    [88]J.Schmutz,S.B.Cannon,J.Schlueter,J.Ma,T.Mitros,W.Nelson,D.L.Hyten,Q.Song,J.J.Thelen,J.Cheng,D.Xu,U.Hellsten,G.D.May,Y.Yu,T.Sakurai,T.Umezawa,M.K.Bhattacharyya,D.Sandhu,B.Valliyodan,E.Lindquist,M.Peto,D.Grant,S.Shu,D.Goodstein,K.Barry,M.FutrellGriggs,B.Abernathy,J.Du,Z.Tian,L.Zhu,N.Gill,T.Joshi,M.Libault,A.Sethuraman,X.C.Zhang,K.Shinozaki,H.T.Nguyen,R.A.Wing,P.Cregan,J.Specht,J.Grimwood,D.Rokhsar,G.Stacey,R.C.Shoemaker,S.A.Jackson,Genome sequence of the palaeopolyploid soybean,Nature 463(2010)178-183.
    [89]X.Xu,S.K.Pan,S.F.Cheng,B.Zhang,D.S.Mu,P.X.Ni,G.Y.Zhang,S.Yang,R.Q.Li,J.Wang,G.Orjeda,F.Guzman,M.Torres,R.Lozano,O.Ponce,D.Martinez,G.De la Cruz,S.K.Chakrabarti,V.U.Patil,K.G.Skryabin,B.B.Kuznetsov,N.V.Ravin,T.V.Kolganova,A.V.Beletsky,A.V.Mardanov,A.Di Genova,D.M.Bolser,D.M.A.Martin,G.C.Li,Y.Yang,H.H.Kuang,Q.Hu,X.Y.Xiong,G.J.Bishop,B.Sagredo,N.Mejia,W.Zagorski,R.Gromadka,J.Gawor,P.Szczesny,S.W.Huang,Z.H.Zhang,C.B.Liang,J.He,Y.Li,Y.He,J.F.Xu,Y.J.Zhang,B.Y.Xie,Y.C.Du,D.Y.Qu,M.Bonierbale,M.Ghislain,M.D.Herrera,G.Giuliano,M.Pietrella,G.Perrotta,P.Facella,K.O'Brien,S.E.Feingold,L.E.Barreiro,G.A.Massa,L.Diambra,B.R.Whitty,B.Vaillancourt,H.N.Lin,A.Massa,M.Geoffroy,S.Lundback,D.DellaPenna,C.R.Buell,S.K.Sharma,D.F.Marshall,R.Waugh,G.J.Bryan,M.Destefanis,I.Nagy,D.Milbourne,S.J.Thomson,M.Fiers,J.M.E.Jacobs,K.L.Nielsen,M.Sonderkaer,M.Iovene,G.A.Torres,J.M.Jiang,R.E.Veilleux,C.W.B.Bachem,J.de Boer,T.Borm,B.Kloosterman,H.van Eck,E.Datema,B.T.L.Hekkert,A.Goverse,R.C.H.J.van Ham,R.G.F.Visser,P.G.S.Consortiu,Genome sequence and analysis of the tuber crop potato,Nature 475(2011)189-195.
    [90]K.F.X.Mayer,R.Waugh,P.Langridge,T.J.Close,R.P.Wise,A.Graner,T.Matsumoto,K.Sato,A.Schulman,G.J.Muehlbauer,N.Stein,R.Ariyadasa,D.Schulte,N.Poursarebani,R.Zhou,B.Steuernagel,M.Mascher,U.Scholz,B.Shi,K.Madishetty,J.T.Svensson,P.Bhat,M.Moscou,J.Resnik,P.Hedley,H.Liu,J.Morris,Z.Frenkel,A.Korol,H.Bergès,S.Taudien,M.Felder,M.Groth,M.Platzer,A.Himmelbach,S.Lonardi,D.Duma,M.Alpert,F.Cordero,M.Beccuti,G.Ciardo,Y.Ma,S.Wanamaker,F.Cattonaro,V.Vendramin,S.Scalabrin,S.Radovic,R.Wing,M.Morgante,T.Nussbaumer,H.Gundlach,M.Martis,J.Poland,M.Spannagl,M.Pfeifer,C.Moisy,J.Tanskanen,A.Zuccolo,J.Russell,A.Druka,D.Marshall,M.Bayer,D.Swarbreck,D.Sampath,S.Ayling,M.Febrer,M.Caccamo,T.Tanaka,S.Wannamaker,T.Schmutzer,J.W.S.Brown,G.B.Fincher,Aphysical,genetic and functional sequence assembly of the barley genome,Nature 491(2012)711-716.
    [91]F.G.Li,G.Y.Fan,C.R.Lu,G.H.Xiao,C.S.Zou,R.J.Kohel,Z.Y.Ma,H.H.Shang,X.F.Ma,J.Y.Wu,X.M.Liang,G.Huang,R.G.Percy,K.Liu,W.H.Yang,W.B.Chen,X.M.Du,C.C.Shi,Y.L.Yuan,W.W.Ye,X.Liu,X.Y.Zhang,W.Q.Liu,H.L.Wei,S.J.Wei,G.D.Huang,X.L.Zhang,S.J.Zhu,H.Zhang,F.M.Sun,X.F.Wang,J.Liang,J.H.Wang,Q.He,L.H.Huang,J.Wang,J.J.Cui,G.L.Song,K.B.Wang,X.Xu,J.Z.Yu,Y.X.Zhu,S.X.Yu,Genome sequence of cultivated upland cotton(Gossypium hirsutum TM-1)provides insights into genome evolution,Nat.Biotechnol.33(2015)524-530.
    [92]R.K.Varshney,C.Song,R.K.Saxena,S.Azam,S.Yu,A.G.Sharpe,S.Cannon,J.Baek,B.D.Rosen,B.Tar'an,T.Millan,X.Zhang,L.D.Ramsay,A.Iwata,Y.Wang,W.Nelson,A.D.Farmer,P.M.Gaur,C.Soderlund,R.V.Penmetsa,C.Xu,A.K.Bharti,W.He,P.Winter,S.Zhao,J.K.Hane,N.CarrasquillaGarcia,J.A.Condie,H.D.Upadhyaya,M.-C.Luo,M.Thudi,C.L.L.Gowda,N.P.Singh,J.Lichtenzveig,K.K.Gali,J.Rubio,N.Nadarajan,J.Dolezel,K.C.Bansal,X.Xu,D.Edwards,G.Zhang,G.Kahl,J.Gil,K.B.Singh,S.K.Datta,S.A.Jackson,J.Wang,D.R.Cook,Draft genome sequence of chickpea(Cicer arietinum)provides a resource for trait improvement,Nat.Biotechnol.31(2013)240-246.
    [93]K.F.X.Mayer,J.Rogers,J.Dolezel,C.Pozniak,K.Eversole,C.Feuillet,B.Gill,B.Friebe,A.J.Lukaszewski,P.Sourdille,T.R.Endo,J.Dolezel,M.Kubalakova,J.Cihalikova,Z.Dubska,J.Vrana,R.Sperkova,H.Simkova,J.Rogers,M.Febrer,L.Clissold,K.McLay,K.Singh,P.Chhuneja,N.K.Singh,J.Khurana,E.Akhunov,F.Choulet,P.Sourdille,C.Feuillet,A.Alberti,V.Barbe,P.Wincker,H.Kanamori,F.Kobayashi,T.Itoh,T.Matsumoto,H.Sakai,T.Tanaka,J.Z.Wu,Y.Ogihara,H.Handa,C.Pozniak,P.R.Maclachlan,A.Sharpe,D.Klassen,D.Edwards,J.Batley,O.A.Olsen,S.R.Sandve,S.Lien,B.Steuernagel,B.Wulff,M.Caccamo,S.Ayling,R.H.RamirezGonzalez,B.J.Clavijo,B.Steuernagel,J.Wright,M.Pfeifer,M.Spannagl,K.F.X.Mayer,M.M.Martis,E.Akhunov,F.Choulet,K.F.X.Mayer,M.Mascher,J.Chapman,J.A.Poland,U.Scholz,K.Barry,R.Waugh,D.S.Rokhsar,G.J.Muehlbauer,N.Stein,H.Gundlach,M.Zytnicki,V.Jamilloux,H.Quesneville,T.Wicker,K.F.X.Mayer,P.Faccioli,M.Colaiacovo,M.Pfeifer,A.M.Stanca,H.Budak,L.Cattivelli,N.Glover,M.M.Martis,F.Choulet,C.Feuillet,K.F.X.Mayer,M.Pfeifer,L.Pingault,K.F.X.Mayer,E.Paux,M.Spannagl,S.Sharma,K.F.X.Mayer,C.Pozniak,R.Appels,M.Bellgard,B.Chapman,M.Pfeifer,M.Pfeifer,S.R.Sandve,T.Nussbaumer,K.C.Bader,F.Choulet,C.Feuillet,K.F.X.Mayer,E.Akhunov,E.Paux,H.Rimbert,S.C.Wang,J.A.Poland,R.Knox,A.Kilian,C.Pozniak,M.Alaux,F.Alfama,L.Couderc,V.Jamilloux,N.Guilhot,C.Viseux,M.Loaec,H.Quesneville,J.Rogers,J.Dolezel,K.Eversole,C.Feuillet,B.Keller,K.F.X.Mayer,O.A.Olsen,S.Praud,Achromosome-based draft sequence of the hexaploid bread wheat(Triticum aestivum)genome,Science 345(2014)1251788.
    [94]J.Schmutz,P.E.McClean,S.Mamidi,G.A.Wu,S.B.Cannon,J.Grimwood,J.Jenkins,S.Shu,Q.Song,C.Chavarro,M.Torres-Torres,V.Geffroy,S.M.Moghaddam,D.Gao,B.Abernathy,K.Barry,M.Blair,M.A.Brick,M.Chovatia,P.Gepts,D.M.Goodstein,M.Gonzales,U.Hellsten,D.L.Hyten,G.Jia,J.D.Kelly,D.Kudrna,R.Lee,M.M.S.Richard,P.N.Miklas,J.M.Osorno,J.Rodrigues,V.Thareau,C.A.Urrea,M.Wang,Y.Yu,M.Zhang,R.A.Wing,P.B.Cregan,D.S.Rokhsar,S.A.Jackson,A reference genome for common bean and genome-wide analysis of dual domestications,Nat.Genet.46(2014)707-713.
    [95]R.K.Varshney,C.Shi,M.Thudi,C.Mariac,J.Wallace,P.Qi,H.Zhang,Y.Zhao,X.Wang,A.Rathore,R.K.Srivastava,A.Chitikineni,G.Fan,P.Bajaj,S.Punnuri,S.K.Gupta,H.Wang,Y.Jiang,M.Couderc,M.A.V.S.K.Katta,D.R.Paudel,K.D.Mungra,W.Chen,K.R.Harris-Shultz,V.Garg,N.Desai,D.Doddamani,N.A.Kane,J.A.Conner,A.Ghatak,P.Chaturvedi,S.Subramaniam,O.P.Yadav,C.BerthoulySalazar,F.Hamidou,J.Wang,X.Liang,J.Clotault,H.D.Upadhyaya,P.Cubry,B.Rhoné,M.C.Gueye,R.Sunkar,C.Dupuy,F.Sparvoli,S.Cheng,R.S.Mahala,B.Singh,R.S.Yadav,E.Lyons,S.K.Datta,C.T.Hash,K.M.Devos,E.Buckler,J.L.Bennetzen,A.H.Paterson,P.Ozias-Akins,S.Grando,J.Wang,T.Mohapatra,W.Weckwerth,J.C.Reif,X.Liu,Y.Vigouroux,X.Xu,Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments,Nat.Biotechnol.35(2017)969-976.
    [96]J.A.Hofberger,E.Lyons,P.P.Edger,J.C.Pires,M.E.Schranz,Whole genome and tandem duplicate retention facilitated glucosinolate pathway diversification in the mustard family,Genome Biol.Evol.5(2013)2155-2173.
    [97]S.D.Nicolas,H.Monod,F.Eber,A.M.Chèvre,E.Jenczewski,Non-random distribution of extensive chromosome rearrangements in Brassica napus depends on genome organization,Plant J.70(2012)691-703.
    [98]S.V.Schiessl,B.Huettel,D.Kuehn,R.Reinhardt,R.J.Snowdon,Targeted deep sequencing of flowering regulators in Brassica napus reveals extensive copy number variation,Sci.Data 4(2017),170013.
    [99]L.W.Qian,K.Voss-Fels,Y.X.Cui,H.U.Jan,B.Samans,C.Obermeier,W.Qian,R.J.Snowdon,Deletion of a stay-green gene associates with adaptive selection in Brassica napus,Mol.Plant 9(2016)1559-1569.
    [100]J.Evans,E.Crisovan,K.Barry,C.Daum,J.Jenkins,G.KundeRamamoorthy,A.Nandety,C.Y.Ngan,B.Vaillancourt,C.L.Wei,J.Schmutz,S.M.Kaeppler,M.D.Casler,C.R.Buell,Diversity and population structure of northern switchgrass as revealed through exome capture sequencing,Plant J.84(2015)800-815.
    [101]J.Zhu,S.Pearce,A.Burke,D.R.See,D.Z.Skinner,J.Dubcovsky,K.Garland-Campbell,Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated with frost tolerance in hexaploid wheat,Theor.Appl.Genet.127(2014)1183-1197.
    [102]T.Würschum,C.F.H.Longin,V.Hahn,M.R.Tucker,W.L.Leiser,Copy number variations of CBF genes at the Fr-A2locus are essential components of winter hardiness in wheat,Plant J.89(2017)764-773.
    [103]E.Francia,C.Morcia,M.Pasquariello,V.Mazzamurro,J.A.Milc,F.Rizza,V.Terzi,N.Pecchioni,Copy number variation at the HvCBF4-HvCBF2 genomic segment is a major component of frost resistance in barley,Plant Mol.Biol.92(2016)161-175.
    [104]T.Sutton,U.Baumann,J.Hayes,N.C.Collins,B.J.Shi,T.Schnurbusch,A.Hay,G.Mayo,M.Pallotta,M.Tester,P.Langridge,Boron-toxicity tolerance in barley arising from efflux transporter amplification,Science 318(2007)1446-1449.
    [105]T.A.Gaines,D.L.Shaner,S.M.Ward,J.E.Leach,C.Preston,P.Westra,Mechanism of resistance of evolved glyphosateresistant palmer amaranth(Amaranthus palmeri),J.Agric.Food Chem.59(2011)5886-5889.
    [106]T.A.Gaines,A.A.Wright,W.T.Molin,L.Lorentz,C.W.Riggins,P.J.Tranel,R.Beffa,P.Westra,S.B.Powles,Identification of genetic elements associated with EPSPS gene amplification,PLoS One 8(2013),e65819.
    [107]D.H.Koo,W.T.Molin,C.A.Saski,J.Jiang,K.Putta,M.Jugulam,B.Friebe,B.S.Gill,Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri,Proc.Natl.Acad.Sci.U.S.A.115(2018)3332-3337.
    [108]C.M.Taylor,L.G.Kamphuis,W.Zhang,G.Garg,J.D.Berger,M.Mousavi-Derazmahalleh,P.E.Bayer,D.Edwards,K.B.Singh,W.A.Cowling,M.N.Nelson,INDEL variation in the regulatory region of the major flowering time gene LanFTc1is associated with vernalisation response and flowering time in narrow-leafed lupin(Lupinus angustifolius L.),Plant Cell Environ.(2018)https://doi.org/10.1111/pce.13320.
    [109]A.Srikanth,M.Schmid,Regulation of flowering time:all roads lead to Rome,Cell.Mol.Life Sci.68(2011)2013-2037.
    [110]Y.Hu,J.Ren,Z.Peng,A.A.Umana,H.Le,T.Danilova,J.J.Fu,H.Y.Wang,A.Robertson,S.H.Hulbert,F.F.White,S.Z.Liu,Analysis of extreme phenotype bulk copy number variation(XP-CNV)identified the association of rp1 with resistance to Goss's wilt of maize,Front.Plant Sci.9(2018)110.
    [111]L.G.Maron,C.T.Guimaraes,M.Kirst,P.S.Albert,J.A.Birchler,P.J.Bradbury,E.S.Buckler,A.E.Coluccio,T.V.Danilova,D.Kudrna,J.V.Magalhaes,M.A.Pineros,M.C.Schatz,R.A.Wing,L.V.Kochian,Aluminum tolerance in maize is associated with higher MATE1 gene copy number,Proc.Natl.Acad.Sci.U.S.A.110(2013)5241-5246.
    [112]N.P.Carter,Methods and strategies for analyzing copy number variation using DNA microarrays,Nat.Genet.39(2007)S16-S21.
    [113]M.Cifuentes,L.Grandont,G.Moore,A.M.Chèvre,E.Jenczewski,Genetic regulation of meiosis in polyploid species:new insights into an old question,New Phytol.186(2010)29-36.
    [114]I.Schubert,M.A.Lysak,Interpretation of karyotype evolution should consider chromosome structural constraints,Trends Genet.27(2011)207-216.
    [115]Z.Y.Xiong,R.T.Gaeta,J.C.Pires,Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus,Proc.Natl.Acad.Sci.U.S.A.108(2011)7908-7913.
    [116]M.Chester,M.J.Lipman,J.P.Gallagher,P.S.Soltis,D.E.Soltis,An assessment of karyotype restructuring in the neoallotetraploid Tragopogon miscellus(Asteraceae),Chromosom.Res.21(2013)75-85.
    [117]K.Lin,N.W.Zhang,E.I.Severing,H.Nijveen,F.Cheng,R.G.F.Visser,X.W.Wang,D.de Ridder,G.Bonnema,Beyond genomic variation-comparison and functional annotation of three Brassica rapa genomes:a turnip,a rapid cycling and a Chinese cabbage,BMC Genomics 15(2014)250.
    [118]Y.H.Li,G.Y.Zhou,J.X.Ma,W.K.Jiang,L.G.Jin,Z.H.Zhang,Y.Guo,J.B.Zhang,Y.Sui,L.T.Zheng,S.S.Zhang,Q.Y.Zuo,X.H.Shi,Y.F.Li,W.K.Zhang,Y.Y.Hu,G.Y.Kong,H.L.Hong,B.Tan,J.Song,Z.X.Liu,Y.S.Wang,H.Ruan,C.K.L.Yeung,J.Liu,H.L.Wang,L.J.Zhang,R.X.Guan,K.J.Wang,W.B.Li,S.Y.Chen,R.Z.Chang,Z.Jiang,S.A.Jackson,R.Q.Li,L.J.Qiu,De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits,Nat.Biotechnol.32(2014)1045-1052.
    [119]P.Zhou,K.A.T.Silverstein,T.Ramaraj,J.Guhlin,R.Denny,J.Q.Liu,A.D.Farmer,K.P.Steele,R.M.Stupar,J.R.Miller,P.Tiffin,J.Mudge,N.D.Young,Exploring structural variation and gene family architecture with de novo assemblies of 15Medicago genomes,BMC Genomics 18(2017)261.
    [120]G.Consortium,C.Alonso-Blanco,J.Andrade,C.Becker,F.Bemm,J.Bergelson,K.M.Borgwardt,J.Cao,E.Chae,T.M.Dezwaan,W.Ding,J.R.Ecker,M.Exposito-Alonso,A.Farlow,J.Fitz,X.C.Gan,D.G.Grimm,A.M.Hancock,S.R.Henz,S.Holm,M.Horton,M.Jarsulic,R.A.Kerstetter,A.Korte,P.Korte,C.Lanz,C.R.Lee,D.Z.Meng,T.P.Michael,R.Mott,N.W.Muliyati,T.Nagele,M.Nagler,V.Nizhynska,M.Nordborg,P.Y.Novikova,F.X.Pico,A.Platzer,F.A.Rabanal,A.Rodriguez,B.A.Rowan,P.A.Salome,K.J.Schmid,R.J.Schmitz,U.Seren,F.G.Sperone,M.Sudkamp,H.Svardal,M.M.Tanzer,D.Todd,S.L.Volchenboum,C.M.Wang,G.Wang,X.Wang,W.Weckwerth,D.Weigel,X.F.Zhou,1,135genomes reveal the global pattern of polymorphism in Arabidopsis thaliana,Cell 166(2016)481-491.
    [121]S.Pinosio,S.Giacomello,P.Faivre-Rampant,G.Taylor,V.Jorge,M.C.Le Paslier,G.Zaina,C.Bastien,F.Cattonaro,F.Marroni,M.Morgante,Characterization of the poplar pangenome by genome-wide identification of structural variation,Mol.Biol.Evol.33(2016)2706-2719.
    [122]F.Lu,M.C.Romay,J.C.Glaubitz,P.J.Bradbury,R.J.Elshire,T.Y.Wang,Y.Li,Y.X.Li,K.Semagn,X.C.Zhang,A.G.Hernandez,M.A.Mikel,I.Soifer,O.Barad,E.S.Buckler,Highresolution genetic mapping of maize pan-genome sequence anchors,Nat.Commun.6(2015)6914.