Mg_xTiAlFeNiCr(x=0.6~2.0)高熵合金微结构演变及耐蚀性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Phase evolution and corrosion resistance of Mg_xTiAlFeNiCr(x=0.6~2.0) high-entropy alloys
  • 作者:斯庭智 ; 刘清华 ; 徐文祥 ; 丁晓丽
  • 英文作者:Tingzhi SI;Qinghua LIU;Wenxiang XU;Xiaoli DING;School of Materials Science and Engineering, Anhui University of Technology;
  • 关键词:高熵合金 ; 相结构 ; 热力学 ; 耐蚀性
  • 英文关键词:high-entropy alloys;;phase structure;;thermodynamics;;corrosion resistance
  • 中文刊名:HGYJ
  • 英文刊名:The Chinese Journal of Process Engineering
  • 机构:安徽工业大学材料科学与工程学院;
  • 出版日期:2018-08-27 16:23
  • 出版单位:过程工程学报
  • 年:2019
  • 期:v.19
  • 基金:国家自然科学基金资助项目(编号:51701004);; 安徽省重点研发计划资助项目(编号:1804a09020067)
  • 语种:中文;
  • 页:HGYJ201902022
  • 页数:7
  • CN:02
  • ISSN:11-4541/TQ
  • 分类号:178-184
摘要
通过机械合金化方法制备了轻质MgxTiAlFeNiCr(x=0.6~2.0)高熵合金,研究了Mg含量、热力学参数、合金相结构间的关系。结果表明,Mg在体心立方(BCC)相中的固溶度较大,x=0.6~1.4、合金的热力学参数原子半径错配度d=8.68%~9.77%、混合熵ΔSmix为14.78~14.82 J/(mol·K),混合焓ΔHmix为-14.13~-6.76 kJ/mol时,合金为单相体心立方结构(BCC1)。x=1.6~1.8,d=10.0%~10.1%,ΔSmix=14.65~14.74J/(mol·K),ΔHmix=-5.40~-4.19kJ/mol时,合金由两种体心立方结构BCC1和BCC2组成。BCC2相比BCC1相的Mg含量更高,两相界面为半共格关系。MgxTiAlFeNiCr合金在3.5wt%NaCl溶液中具有良好的耐腐蚀性能。但随Mg含量增加,合金的耐蚀性下降。
        The novel low density MgxT iAlFeNiCr(x=0.6~2.0) high-entropy alloys were prepared by mechanical alloying, the relation of Mg content, thermodynamic parameter and phase structure was researched. The results showed that the prepared high-entropy alloy powders were approximately spherical particles with a diameter about 3 μm. The measurements of X-ray diffraction(XRD) and analyses of energy-dispersive X-ray spectrometry(EDS) revealed that Mg had a high solid solubility in BCC(body center cubic) lattice. The results of thermodynamic calculation showed that the alloys(x=0.6~1.4) had a single BCC1 phase when 8.68%≤δ≤9.77%(δ was atomic radii mismatches), 14.78 J/(mol·K)≤ΔSmix≤14.82 J/(mol·K)(ΔSmix was mixing entropy) and-14.13 kJ/mol≤ΔHmix≤-6.76 kJ/mol(ΔHmix was mixing enthalpy). However, the alloys(x=1.6~1.8) consisted of BCC1 and BCC2 phases when 10.0%≤δ≤10.1%, 14.65 J/(mol·K)≤ΔSmix≤14.74 J/(mol·K) and-5.40 kJ/mol≤ΔHmix≤-4.19 kJ/mol. When x≥2.0, Mg content exceeded the solid solubility of Mg in BCC1 and BCC2 lattices. As a result, Mg2.0 TiAlFeNiCr alloy contained the main phases BCC1 and BCC2 and the minor phases Mg and intermetallic compound. The lattice constant(a) of BCC1 and BCC2 were determined respectively to be 0.289 and 0.291 nm by the XRD measurement and high resolution transmission electron microscope(HRTEM) analysis. For BCC1 phase, Fe acted as a solvent element whereas Mg, Ti, Al, Ni and Cr behaved like solute elements. For BCC2, however, Cr acted as a solvent element whereas Mg, Ti, Al, Fe and Ni behaved like solute elements. Compared with BCC1, high Mg content was achieved in BCC2 phase. Moreover, BCC1 and BCC2 displayed a semicoherent interface. The Mgx TiAlFeNiCr(x=0.6~2.0) high-entropy alloys exhibited a good corrosion resistance in 3.5 wt% NaCl solution. But the corrosion resistance decreased with the increasing of Mg in the alloys.
引文
[1]Yeh J W,Chen S K,Lin S J,et al.Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):229-303.
    [2]Tong C J,Yeh J W.Mechanical performance of the Alx CoCrCuFeNi high-entropy alloys system with multiprincipal elements[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2005,36A:1263-1271.
    [3]Zhang Y,Zuo T T,Tang Z,et al.Microstructures and properties of high-entropy alloys[J].Progress in Materials Science,2014,61(8):1-93.
    [4]Murty B S,Yeh J W,Ranganathan S.High-entropy alloys[M].Amsterdam:Elsevier,2014:175.
    [5]Tsai M H,Yeh J W.High-entropy alloys:a critical review[J].Materials Research Letters,2014,2(3):107-123.
    [6]张勇.非晶和高熵合金[M].北京:科学出版社,2010:78.Zhang Y.Amorphous and high entropy alloys[M].Beijing:Science Press,2010:78.
    [7]Ding P,Mao A,Zhang X,et al.Preparation,characterization and properties of multicomponent AlCoCrFeNi2.1 powder by gas atomization method[J].Journal of Alloys and Compounds,2017,721:609-614.
    [8]姚陈忠,张鹏,李高仁,等.电化学制备Fe13.8Co28.7Ni4.0Mn22.1Bi14.9Tm16.5高熵合金及其软磁性研究[J].中国稀土学报,2008,26(8):367-369.Yao C Z,Zhang P,Li G R,et al.Electrochemical synthesis and magnetic study of Ni-Fe-Co-Mn-Bi-Tm high entropy alloy film in nonaqueous system[J].Journal of the Chinese Rare Earth Society,2008,26(8):367-369.
    [9]Youssef K M,Zaddach A J,Niu C,et al.A novel low-density,high-hardness,high-entropy alloy with close-packed single-phase nanocrystalline structures[J].Materials Research Letters,2015,3(2):95-99.
    [10]Li R,Gao J,Fan K.Study to microstructure and mechanical properties of Mg containing high entropy alloys[J].Materials Science Forum,2010,650:265-271.
    [11]Gao X Q,Zhao K,Ke H B,et al.High mixing entropy bulk metallic glasses[J].Journal of Non-Crystalline Solids,2011,357(21):3557-3560.
    [12]Khanchandani H,Sharma P,Kumar R,et al.Effect of sintering on phase evolution in AlMgFeCuCrNi4.75 high entropy alloy[J].Advanced Powder Technology,2016,27:289-294.
    [13]Maulik O,Kumar V.Synthesis of AlFeCuCrMgx(x=0,0.5,1,1.7)alloy powders by mechanical alloying[J].Materials Characterization,2015,110:116-125.
    [14]王稳.轻质及含镁高熵合金的设计、微观组织及储氢性能研究[D].兰州:兰州理工大学,2014:40-52.Wang W.Design and microstructure and hydrogen storage properties of the lightweight and high entropy alloys containing magnesium[D].Lanzhou:Lanzhou University of Technology,2014:40-52.
    [15]Sun W H,Huang X J,Luo A A.Phase formations in low density high entropy alloys[J].Calphad-Computer Coupling of Phase Diagrams and Thermochemistry,2017,56:19-28.
    [16]Ma E,He J H,Schilling P J.Mechanical alloying of immiscible element:Ag-Fe contrasted with Cu-Fe[J].Physical Review B:Condensed Matter,1997,55:5542-5545.
    [17]Maulik O,Kumar D,Kumar S,et al.Structural evolution of spark plasma sintered AlFeCuCrMgx(x=0,0.5,1,1.7)high entropy alloy powders[J].Intermetallics,2016,77:46-56.
    [18]Otto F,Yang Y,Bai H,et al.Relative effects of enthalpy and entropy on the phase stability of high-entropy alloys[J].Acta Materialia,2013,61:2628-2638.
    [19]Guo S,Liu C T.Phase stability in high entropy alloys:formation of solid solution phase and amorphous phase[J].Progress in Natural Science:Materials International,2015,211(21):433-446.
    [20]Yang X,Zhang Y.Prediction of high-entropy stabilized solid solution in multi-component alloys[J].Materials Chemistry and Physics,2012,132:233-238.
    [21]Takeuchi A,Inoue A.Classification of bulk metallic glasses by atomic size difference,heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J].Materials Transaction,2005,46(12):2817-2829.
    [22]Miracle D B,Senkov O N.Acritical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122:448-511.
    [23]张青来,钱阳,安志斌,等.基于激光冲击的镁合金在NaCl溶液中电化学腐蚀的研究[J].中国激光,2014,41(9):76-82.Zhang Q L,Qian Y,An Z B,et al.Study on electrochemical corrosion of Magnesium alloys by laser shock processing in NaCl solution[J].Chinese Journal of Lasers,2014,41(9):76-82.