对流条件下架空导线载流-温度分布热路模型构建
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Construction of thermal conduction model for overhead conductor ampacity-temperature distribution under convection conditions
  • 作者:董选昌 ; 曲烽瑞 ; 李艳飞 ; 方百里 ; 王亦清 ; 李炀 ; 刘刚
  • 英文作者:DONG Xuan-chang;QU Feng-rui;LI Yan-fei;FANG Bai-li;WANG Yi-qing;LI Yang;LIU Gang;Transmission Management Department of Guangzhou Power Supply Bureau,China Southern Power Grid;School of Electric Power, South China University of Technology,Guangzhou 510640, China;School of Electric Power, South China University of Technology;
  • 关键词:径向温度 ; 热路模型 ; 接触热阻 ; 分布热源 ; 风洞实验
  • 英文关键词:radial temperature;;thermal model;;contact thermal resistance;;distributed heat source;;wind tunnel experiment
  • 中文刊名:DGDN
  • 英文刊名:Advanced Technology of Electrical Engineering and Energy
  • 机构:中国南方电网广州供电局输电管理所;华南理工大学电力学院;
  • 出版日期:2018-09-13 09:24
  • 出版单位:电工电能新技术
  • 年:2019
  • 期:v.38;No.187
  • 基金:中国南方电网广州供电局有限公司科技项目(GZHKJXM20160044)
  • 语种:中文;
  • 页:DGDN201901008
  • 页数:7
  • CN:01
  • ISSN:11-2283/TM
  • 分类号:57-63
摘要
由于架空导线径向温差的存在,仅仅以监测得到的架空线路表层温度表征导线温度,为线路安全运行埋下隐患。为此,本文根据架空导线内部导体结构特征,借鉴热电比拟思想,提出了导线内部温度分布热路模型,并确定了分布接触热阻和分布内热源的计算方法;为验证模型精度,设计并搭建升流实验系统和风洞测温实验平台,以LGJ240/30mm~2导线为例,对自然对流条件和强制对流条件下的模型计算结果进行实验验证和分析。验证结果表明:自然对流条件下,各层导体温度的平均相对误差为4.6%,强制对流条件下各层导体温度的平均相对误差仅为1.54%;径向温差的计算精度高于IEEE标准模型。
        Due to the radial temperature difference of overhead conductors, the surface temperature of the overhead lines is only used to characterize the temperature of the conductors, thus laying a hidden danger for the safe operation of the lines. For this reason, according to the characteristics of the internal conductors of overhead conductors and the idea of thermoelectricity, this paper proposes a thermal circuit model of the internal temperature distribution of the conductors, and determines the distribution contact thermal resistance and the calculation method of the internal heat sources. In order to verify the accuracy of the model, this paper designs and builds a boosting current experimental system and a wind tunnel temperature measurement experiment platform. Taking the LGJ240/30mm~2 wire as an example, this paper carries out experimental verification and analysis of the model calculation results under natural convection conditions and forced convection conditions. The verification results show that under natural convection conditions, the average relative error of conductor temperature in each layer is 4.6%, and the average relative error of conductor temperature in each layer under forced conditions is only 1.54%; the calculation accuracy of radial temperature difference is higher than the IEEE standard model.
引文
[1] 刘刚,靳艳娇,马永强,等(Liu Gang, Jin Yanjiao, Ma Yongqiang, et al.).基于非平均热源的油浸式变压器2维温度场分析(Two-dimensional temperature field analysis of oil-immersed transformer based on non-uniformly heat source)[J].高电压技术(High Voltage Engineering),2017,43(10):3361-3370.
    [2] 应展烽,冯凯,杜志佳,等(Ying Zhanfeng, Feng Kai, Du Zhijia, et al.). 高压架空导线电流与轴向温度关系计算的热路模型(Thermal circuit modeling of the relationship between current and axial temperature for high voltage overhead conductor)[J]. 中国电机工程学报(Proceedings of the CSEE),2015,35(11):2887-2895.
    [3] Douglass D A. Radial and axial temperature gradients in bare stranded conductor[J]. IEEE Transactions on Power Delivery, 1986, 1(2): 7-16.
    [4] 戴沅, 聂耸, 程养春, 等(Dai Yuan, Nie Song, Cheng Yangchun, et al.). 输电线路动态增容载流量计算模型综述(Review of ampacity computation model of transmission line’s dynamic capacity-increase)[J]. 广东电力(Guangdong Electric Power), 2012, 25(11): 51-56.
    [5] Douglass D A, Edris A A. Field studies of dynamic thermal rating methods for overhead lines[A]. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference[C]. New Orleans, USA, 1999. 2: 842-851.
    [6] Nigol O, Barrett J S. Characteristics of ACSR conductors at high temperature and stresses[J]. IEEE Transactions on Power Apparatus and Systems, 1981, PAS-100(2): 485-494.
    [7] 孟遂民, 孔伟(Meng Suimin, Kong Wei). 架空输电线路设计(Overhead transmission line design)[M]. 北京:中国电力出版社(Beijing: China Electric Power Press), 2007. 82-84.
    [8] Black W Z. Theoretical model for temperature gradients within bare overhead conductors[J]. IEEE Transactions on Power Delivery, 1988, 3(2): 707-716.
    [9] IEEE Std738-2012, IEEE standard for calculating the current-temperature of bare overhead conductors[S].
    [10] Minambres J F, Barandiaran J J, Alvarez-Isasi R, et al. Radial temperature distribution in ACSR conductors applying finite elements[J]. IEEE Transactions on Power Delivery, 1999, 14(2): 472-480.
    [11] 肖凯, 刘永斗, 李鹏云,等(Xiao Kai, Liu Yongdou, Li Pengyun, et al.). 架空导线温度场的数值模拟(Numerical simulation of radial temperature field of overhead conductors)[J]. 武汉理工大学学报(Journal of Wuhan University of Technology), 2015, 37(4): 65-70.
    [12] 应展烽,杜志佳,冯凯,等(Ying Zhanfeng, Du Zhijia, Feng Kai, et al.). 高压架空导线径向热路模型及其参数计算方法(Radial thermal circuit model and parameter calculation method for high voltage overhead transmission line)[J]. 电工技术学报(Transactions of China Electrotechnical Society), 2016,31(4):13-21.
    [13] Barret J S, Nigol O, Fehervari C J, et al. A new model of AC resistance in ACSR conductors[J]. IEEE Transactions on Power Systems, 1986, PER-6(2): 198-208.
    [14] Morgan V T, Zhang Bo, Findlay R D. Effect of magnetic induction in a steel-core conductor on current distribution, resistance and power loss[J]. IEEE Transactions on Power Delivery, 1997,12(3):1299-1308.
    [15] 梁任(Liang Ren). 架空导线运行温度及载流量的数值模拟分析(Numerical simulation analysis on operating temperature and current carrying capacity of overhead conductor)[D]. 郑州:郑州大学(Zhengzhou: Zhengzhou University), 2017.
    [16] 刘刚, 阮班义, 林杰, 等(Liu Gang, Ruan Banyi, Lin jie, et al.). 架空导线动态增容的热路法稳态模型(Steady-state model of thermal circuit method for dynamic overhead lines rating)[J]. 高电压技术(High Voltage Engineering), 2013, 39(5): 1107-1113.
    [17] 刘刚, 林杰,陈荣锋,等(Liu Gang, Lin Jie, Chen Rongfeng, et al.). 架空线路载流量的导线温度测量方法研究(Method of measuring conductor temperature for ampacity of overhead lines)[J]. 电测与仪表(Electrical Measurement & Instrumentation), 2013, 50(4): 41-53.