驯化硝化型生物絮体养殖南美白对虾的初步研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preliminary study on domesticating nitrifying bio-flocs to rear Litopenaeus vannamei
  • 作者:谭洪新 ; 庞云 ; 王潮辉 ; 罗国芝 ; 刘文畅
  • 英文作者:TAN Hongxin;PANG Yun;WANG Chaohui;LUO Guozhi;LIU Wenchang;College of Fisheries and Life Science,Shanghai Ocean University;Shanghai Aquacultural Engeering Research Center;Shanghai Collaborative Innovation For Aquatic Animal Genetics and Breeding;
  • 关键词:生物絮凝养殖系统 ; 硝化型生物絮体 ; 南美白对虾 ; 水质 ; 生长 ; 细菌群落
  • 英文关键词:bio-floc culture system;;nitrifying bio-floc;;Litopenaeus vannamei;;water quality;;growth;;bacterial community
  • 中文刊名:SSDB
  • 英文刊名:Journal of Shanghai Ocean University
  • 机构:上海海洋大学水产与生命学院;上海水产养殖工程技术研究中心;水产动物遗传育种上海市协同创新中心;
  • 出版日期:2017-07-15
  • 出版单位:上海海洋大学学报
  • 年:2017
  • 期:v.26
  • 基金:“十二五”农村领域国家科技计划课题(2012BAD25B03);; 上海市科学技术委员会项目(16DZ2281200,14320501900)
  • 语种:中文;
  • 页:SSDB201704002
  • 页数:11
  • CN:04
  • ISSN:31-2024/S
  • 分类号:12-22
摘要
尝试在养殖中期逐渐降低碳源添加量至零,探讨驯化硝化型生物絮体对生物絮凝高密度南美白对虾养殖系统的水质、生物絮体细菌群落动态变化和对虾生长性能的影响。实验在3个跑道式养殖系统中进行,放养密度均为685尾/m~3。水质结果表明养殖前1~45 d,每日按日投饵量的100%~150%添加葡萄糖,能很好地降低氨氮的浓度,但对亚硝酸盐氮处理效果不明显。投糖量下降至零后,氨氮仍能维持在较低水平,亚硝酸盐氮浓度明显下降。利用高通量测序技术对生物絮体的细菌群落结构进行分析。检测结果表明在门水平上,异养型和硝化型生物絮体的主要优势菌群都是Proteobacteria(变形菌门)和Bacteroidetes(拟杆菌门)。在纲水平上,异养型生物絮体的优势菌群是Alphaproteobacteria(α-变形菌纲),而硝化型生物絮体的优势菌群有Alphaproteobacteria(α-变形菌纲)、Flavobacteria(黄杆菌纲)和Gammaproteobacteria(γ-变形纲)。系统在65 d后不添加碳源情况下,生物絮体的异养细菌丰度减少,硝化螺旋菌属(Nitrospiral)开始快速增多并发展成为硝化细菌的优势菌群属,异养型生物絮体逐渐转变为硝化型生物絮体。实验结束时,总投糖量占总投饵量的41.03%±7.86%。南美白对虾的存活率和产量分别为43.35%±7.57%和(3.03±0.59)kg/m3。研究表明驯化硝化型生物絮体能优化高密度零水交换对虾养殖系统生物絮体的细菌群落结构和丰度,改善养殖水环境,保证对虾的生长和存活,节约成本。
        This study tries to gradually reduce the addition of carbon source to zero,and to explore the effect of domesticating nitrifying bio-flocs on water quality,bacterial community dynamics of bio-floc and the growth performance of shrimp in high-intensive culture system.Experiment was carried out in three runway aquaculture systems at stocking density of 685 shrimp/m~3.Water quality results showed that daily addition of glucose at 100%-150% of feed,which can decrease the concentration of TAN,but the concentration of NO_2~--N was not decreased obviously.When the addition of glucose dropped to zero,TAN can be maintained at lower level,and the NO_2~--N concentration decreased significantly.The bacterial community structure was analyzed by using high throughput sequencing technology.At the phylum level,experiment results showed that both the main advantage microflora of heterotrophic bioflocs and nitrifying bioflocs are Proteobacteria and Bacteroidetes.At the class level,dominant microflora of heterotrophic biofloc is Alphaproteobacteria,and dominant microflora of nitrifying bioflocs are Alphaproteobacteria,Flavobacteria and Gammaproteobacteria.After 65 d,study found that without adding carbon source,nitrifying bio-flocs can limit the abundance of heterotrophic bacteria,nitrospira was rising,and developing into dominant bacteria.At the end of the experiment,glucose which is 41.03%±7.86% of feed was added throughout the culture period.The survival rate and harvest of Litopenaeus vannamei respectively were 43.35%±7.57% and(3.03±0.59) kg/m~3.The domestication of nitrifying bio-flocs not only saved cost,but also effectively optimized the structure of bacterial communities,and contributed to better water environment which results in the higher growth and survival of shrimp.
引文
[1]HARI B,MADHUSOODANA KURUP B,VARGHESE J T,et al.The effect of carbohydrate addition on water quality and the nitrogen budget in extensive shrimp culture systems[J].Aquaculture,2006,252(2/4):248-263.
    [2]XU W J,PAN L Q.Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in bioflocbased culture tanks manipulating high C/N ratio of feed input[J].Aquaculture,2013,412-413:117-124.
    [3]高磊.碳氮比调节在对虾养殖中的作用及优化[D].青岛:中国海洋大学,2012.GAO L.The effection and optimization of adjusting C/N ratio in the shrimp culture system[D].Qingdao:Ocean University of China,2012.
    [4]王超,潘鲁青,张开全.生物絮团在凡纳滨对虾零水交换养殖系统中的应用研究[J].海洋湖沼通报,2015(2):81-89.WANG C,PAN L Q,ZHANG K Q.Research and application of bioflocs in zero water exchange system for Litopenaeus vannamei Aquaculture[J].Transactions of Oceanology and Limnology,2015(2):81-89.
    [5]罗国芝,朱泽闻,潘云峰,等.生物絮凝技术在水产养殖中的应用[J].中国水产,2010(2):62-63.LUO G Z,ZHU Z W,PAN Y F,et al.Application of biofloc technology in Aquaculture[J].China Fisheries,2010(2):62-63.
    [6]AVNIMELECH Y.Carbon/nitrogen ratio as a control element in aquaculture systems[J].Aquaculture,1999,176(3/4):227-235.
    [7]EBELING J M,TIMMONS M B,BISOGNI J J.Engineering analysis of the stoichiometry of photoautotrophic,autotrophic,and heterotrophic removal of ammonia-nitrogen in aquaculture systems[J].Aquaculture,2006,257(1/4):346-358.
    [8]RAY A J,LOTZ J M.Comparing a chemoautotrophic-based biofloc system and three heterotrophic-based systems receiving different carbohydrate sources[J].Aquacultural Engineering,2014,63:54-61.
    [9]COHEN J M,SAMOCHA T M,FOX J M,et al.Characterization of water quality factors during intensive raceway production of juvenile Litopenaeus vannamei using limited discharge and biosecure management tools[J].Aquacultural Engineering,2005,32(3/4):425-442.
    [10]国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.State Environmental Protection Administration of China.Methods of Monitoring and Analyzing for Water and Wastewater[M].4th ed.Beijing:China Environmental Science Press,2002.
    [11]AVNIMELECH Y,KOCHBA M.Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks,using 15N tracing[J].Aquaculture,2009,287(1/2):163-168.
    [12]GAONA C A P,POERSCH,L H,KRUMMENAUER D,et al.The effect of solids removal on water quality,growth and survival of Litopenaeus vannamei in a biofloc technology culture system[J].International Journal of Recirculating Aquaculture,2011,12:54-73.
    [13]邓应能,赵培,孙运忠,等.生物絮团在凡纳滨对虾封闭养殖试验中的形成条件及作用效果[J].渔业科学进展,2012,33(2):69-75.DENG Y N,ZHAO P,SUN Y Z,et al.Conditions for biofloc formation and its effects in closed culture system of Litopenaeus vannamei[J].Progress in Fishery Sciences,2012,33(2):69-75.
    [14]ARNOLD S J,COMAN F E,JACKSON C J,et al.Highintensity,zero water-exchange production of juvenile tiger shrimp,Penaeus monodon:An evaluation of artificial substrates and stocking density[J].Aquaculture,2009,293(1/2):42-48.
    [15]CORREIA E S,WILKENFELD J S,MORRIS T C,et al.Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system[J].Aquacultural Engineering,2014,59:48-54.
    [16]RAY A J,SEABORN G,LEFFLER J W,et al.Characterization of microbial communities in minimalexchange,intensive aquaculture systems and the effects of suspended solids management[J].Aquaculture,2010,310(1/2):130-138.
    [17]SAMOCHA T M,WILKENFELD J S,MORRIS T C,et al.Intensive raceways without water exchange analyzed for white shrimp culture[J].Global Aquaculture Advocate,2010,13(E2):22-24.
    [18]KUHN D D,SMITH S A,BOARDMAN G D,et al.Chronic toxicity of nitrate to Pacific white shrimp,Litopenaeus vannamei:Impacts on survival,growth,antennae length,and pathology[J].Aquaculture,2010,309(1/4):109-114.
    [19]ZUBKOV M V,MARY I,WOODWARD E M S,et al.Microbial control of phosphate in the nutrient-depleted North Atlantic subtropical gyre[J].Environmental Microbiology,2007,9(8):2079-2089.
    [20]SAMOCHA T M,PATNAIK S,SPEED M,et al.Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei[J].Aquacultural Engineering,2007,36(2):184-191.
    [21]RAY A J,LEWIS B L,BROWDY C L,et al.Suspended solids removal to improve shrimp(Litopenaeus vannamei)production and an evaluation of a plant-based feed in minimal-exchange,superintensive culture systems[J].Aquaculture,2010,299(1/4):89-98.
    [22]FURTADO P S,POERSCH L H,WASIELESKY Jr W.The effect of different alkalinity levels on Litopenaeus vannamei reared with biofloc technology(BFT)[J].Aquaculture International,2015,23(1):345-358.
    [23]CHEN S L,LING J,BLANCHETON J P.Nitrification kinetics of biofilm as affected by water quality factors[J].Aquacultural Engineering,2006,34(3):179-197.
    [24]DAVIDSON J,GOOD C,BARROWS F T,et al.Comparing the effects of feeding a grain-or a fish meal-based diet on water quality,waste production,and rainbow trout Oncorhynchus mykiss performance within low exchange water recirculating aquaculture systems[J].Aquacultural Engineering,2013,52:45-57.
    [25]李杰.碳氮比调控对虾蟹混养系统细菌群落结构及其功能多样性影响的研究[D].青岛:中国海洋大学,2015.LI J.Studies on the effects of carbon regulation on the structure and functions of bacterial community in the polyculture system of Portunns trituberculatus and Litopenaeus vannamei[D].Qingdao:Ocean University of China,2015.
    [26]王娇,马灌楠,邓元告,等.葡萄糖和盐度对卤虫生长、养殖系统生物絮团形成及其微生物多样性的影响[J].海洋与湖沼,2015,46(2):372-380.WANG J,MA G N,DENG Y G,et al.Effects of glucose and salinity on Artemia growth,biofloc formation,and microbial diversity in culture[J].Oceanologia et Limnologia Sinica,2015,46(2):372-380.
    [27]夏耘,郁二蒙,谢骏,等.基于PCR-DGGE技术分析生物絮团的细菌群落结构[J].水产学报,2012,36(10):1563-1571.XIA Y,YU E M,XIE J,et al.Analysis of bacterial community structure of Bio-floc by PCR-DGGE[J].Journal of Fisheries of China,2012,36(10):1563-1571.
    [28]杨章武,杨铿,张哲,等.基于宏基因组测序技术分析凡纳滨对虾育苗中生物絮团细菌群落结构[J].福建水产,2015,37(2):91-97.YANG Z W,YANG K,ZHANG Z,et al.Research on the biofloc bacterial community structure during larval rearing of Litopenaeus vannamei using metagenome sequencing[J].Journal of Fujian Fisheries,2015,37(2):91-97.
    [29]WINSLEY T J,SNAPE I,MCKINLAY J,et al.The ecological controls on the prevalence of candidate division TM7 in polar regions[J].Frontiers in Microbiology,2014,5:345.
    [30]KUHN D D,DRAHOS D D,MARSH L,et al.Evaluation of nitrifying bacteria product to improve nitrification efficacy in recirculating aquaculture systems[J].Aquacultural Engineering,2010,43(2):78-82.
    [31]EHRICH S,BEHRENS D,LEBEDEVA E,et al.A new obligately chemolithoautotrophic,nitrite-oxidizing bacterium,Nitrospira moscoviensis sp.nov.and its phylogenetic relationship[J].Archives of Microbiology,1995,164(1):16-23.
    [32]MCINTOSH D,SAMOCHA T M,JONES E R,et al.The effect of a commercial bacterial supplement on the highdensity culturing of Litopenaeus vannamei with a low-protein diet in an outdoor tank system and no water exchange[J].Aquacultural Engineering,2000,21(3):215-227.
    [33]TACON A G J,CODY J J,CONQUEST L D,et al.Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei(Boone)fed different diets[J].Aquaculture Nutrition,2002,8(2):121-137.
    [34]CARDONA E,LORGEOUX B,GEFFROY C,et al.Relative contribution of natural productivity and compound feed to tissue growth in blue shrimp(Litopenaeus stylirostris)reared in biofloc:Assessment by C and N stable isotope ratios and effect on key digestive enzymes[J].Aquaculture,2015,448:288-297.
    [35]BECERRA-DORAME M J,MARTINEZ-PORCHAS M,MARTINEZ-CORDOVA L R,et al.Production response and digestive enzymatic activity of the Pacific white shrimp Litopenaeus vannamei(Boone,1931)intensively pregrown in microbial heterotrophic and autotrophic-based systems[J].Scientific World Journal,2012,2012:723654.
    [36]蒲利云,杨明秋,何玉贵,等.南美白对虾工厂化循环水养殖技术[J].水产科技情报,2016,43(2):75-78.PU L Y,YANG M Q,HE Y G,et al.Technology of industrialized recirculating aquaculture on Litopenaeus vannamei[J].Fisheries Science&Technology Information,2016,43(2):75-78.
    [37]张许光,赵培,王国成,等.不同放苗密度凡纳滨对虾生物絮团养殖的环境和产出效应[J].渔业科学进展,2013,34(3):111-119.ZHANG X G,ZHAO P,WANG G C,et al.The environmental and production effect of bio-floc aquaculture of Litopenaeus vannamei at different stocking densities[J].Progress in Fishery Sciences,2013,34(3):111-119.
    [38]刘军,戴习林,臧维玲.凡纳滨对虾温棚高位池养殖密度及简易水质调控措施效果研究[J].上海海洋大学学报,2016,25(2):189-197.LIU J,DAI X L,ZANG W L.Research of breeding density and water quality control measures in Litopenaeus vannamei greenhouse high-intensive ponds[J].Journal of Shanghai Ocean University,2016,25(2):189-197.