滇西北高原湿地植物凋落物在不同分解界面的质量衰减及其微生物驱动
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mass Attenuation of Plant Litter and Its Microbial Driving from a Wetland of Northwestern Yunnan Plateau, China
  • 作者:闫鹏飞 ; 展鹏飞 ; 王行 ; 刘振亚 ; 张晓宁 ; 张贇 ; 肖德荣
  • 英文作者:YAN Pengfei;ZHAN Pengfei;WANG Hang;LIU Zhenya;ZHANG Xiaoning;ZHANG Yun;XIAO Derong;College of Wetlands/National Plateau Wetlands Research Center,Southwest Forestry University;
  • 关键词:滇西北高原 ; 凋落物分解 ; 微生物 ; 碳源利用
  • 英文关键词:Northwestern Yunnan Plateau;;litter decomposition;;microorganisms;;carbon sources utilization
  • 中文刊名:DNYX
  • 英文刊名:Acta Botanica Boreali-Occidentalia Sinica
  • 机构:西南林业大学湿地学院/国家高原湿地研究中心;
  • 出版日期:2019-04-15
  • 出版单位:西北植物学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金(31370497,31500409,41877346);; 云南省应用基础研究计划(2015FD026);; 云南省高原湿地科学省创新团队项目(2012HC007)
  • 语种:中文;
  • 页:DNYX201904019
  • 页数:10
  • CN:04
  • ISSN:61-1091/Q
  • 分类号:148-157
摘要
研究植物凋落物分解及其微生物的驱动机制,对于掌握湿地生态系统物质循环特征及其关键生态过程具有重要意义。该研究以滇西北高原典型湿地纳帕海湖滨带的优势植物茭草和杉叶藻为研究对象,通过凋落物袋法和Biolog GenⅢ技术,研究其凋落物在大气界面、水界面和土界面的质量衰减特征以及微生物的碳源利用和代谢的变化规律。结果表明:(1)通过一年的分解,茭草凋落物在大气界面、水界面和土界面的质量残留率分别为77.7%、42.2%、25.3%,显著高于杉叶藻凋落物的相应质量残留率(41.6%、32.5%、12.4%);但同一物种不同分解生境下质量残留率则表现为大气界面>水界面>土界面。(2)2种植物不同界面的平均吸光度值上升快慢存在差异,茭草土界面和杉叶藻大气界面中的微生物碳源代谢强度最大;土界面下茭草植物微生物碳源利用率最高,且醇类和胺类的碳源利用率达到0.26和0.24。(3)2种植物的微生物群落结构存在一定的差异,茭草凋落物土界面中微生物群落对各类碳源有较强的利用能力,其微生物群落所含物种比较丰富、群落均匀性和多样性更加明显,与茭草凋落物质量残留率季节性变化结果较为一致。研究认为,研究区域内凋落物质量衰减和微生物的关系,可以为生态系统的稳定与发展及凋落物分解的微生物学机理提供科学依据。
        Studying the effects of microorganisms on the decomposition of litter and its action law are great significance for revealing the changes of ecosystem material cycle and ecological function. In this study, the dominant lakeside plants Zizania latifolia and Hippuris vulgaris were used as the research objects from the Napahai wetland, which is located on the Northwestern Yunnan Plateau. The mass attenuation characteristics and changes in microbial carbon source utilization and metabolism of litter under different interfaces were studied by Biolog GenⅢ identification technology. The results revealed that:(1) after one-year decomposition, the mass residue rates of Z. latifolia at air interface, water interface and soil interface were 77.7%, 42.2% and 25.3%, respectively, which were significantly higher than those of H. vulgaris(41.6%, 32.5%, 12.4%). For the same species, the mass residue rates at different decomposition habitats were air interface > water interface > soil interface.(2) There is a difference in the AWCD values of the two plants at different interfaces. The microbial carbon source has the highest metabolic intensity at the soil interface for Z. latifolia and the air interface for H. vulgaris. Microbial carbon source utilization of Z. latifolia was the highest under soil interface, and carbon source utilization of alcohols and amines reached 0.26 and 0.24, respectively.(3) There are certain differences in the microbial community structure between two plant litters. The microbial community at the soil interface of Z. latifolia litter has a strong ability to utilize all kinds of carbon sources, and its microbial community contains abundant species, and its community uniformity and diversity are more obvious, which is consistent with the seasonal variation of Z. latifolia mass residue rate. To study the relationship between the decomposition of litter and microorganisms can provide scientific basis and reference for the stability and development of ecosystem and the microbiological mechanism of litter decomposition.
引文
[1] BOYERO L,PEARSON R G,GESSNER M O,et al.A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration[J].Ecology Letters,2011,14(3):289-294.
    [2] 张晓宁,刘振亚,李丽萍,等.大气增温对滇西北高原典型湿地湖滨带优势植物凋落物质量衰减的影响[J].生态学报,2017,37(23):7 811-7 820.ZHANG X N,LIU Z Y,LI L P,et al.Effect of experimental warming on the decomposition of litter from dominant lakeside plants in a typical wetland of Northwestern Yunnan Plateau,China[J].Acta Ecologica Sinica,2017,37(23):7 811-7 820.
    [3] 郭绪虎,肖德荣,田昆,等.滇西北高原纳帕海湿地湖滨带优势植物生物量及其凋落物分解[J].生态学报,2013,33(5):1 425-1 432.GUO X H,XIAO D R,TIAN K,et al.Biomass production and litter decomposition of lakeshore plants in Napahai wetland.Northwestern Yunnan Plateau.China[J].Acta Ecologica Sinica,2013,33(5):1 425-1 432.
    [4] 王新源,赵学勇,李玉霖,等.环境因素对干旱半干旱区凋落物分解的影响研究进展[J].应用生态学报,2013,24(11):3 300-3 310.WANG X Y,ZHAO X Y,LI Y L,et al.Effects of environmental factors on litter decomposition in arid and semi-arid regions:A review[J].Chinese Journal of Applied Ecology,2013,24(11):3 300-3 310.
    [5] CRIQUET S,FARNET A M,TAGGER S,et al.Annual variations of phenoloxidase activities in an evergreen oak litter:influence of certain biotic and abiotic factors[J].Soil Biology and Biochemistry,2000,32(11-12):1 505-1 513.
    [6] 宋新章,江洪,张慧玲,等.全球环境变化对森林凋落物分解的影响[J].生态学报,2008,28(9):4 414-4 423.SONG X Z,JIANG H,ZHANG H L,et al.A review on the effects of global environment change on litter decomposition[J].Acta Ecologica Sinica,2008,28(9):4 414-4 423.
    [7] SMITH V C,BRADFORD M A.Litter quality impacts on grassland litter decomposition are differently dependent on soil fauna across time[J].Applied Soil Ecology,2003,24(2):197-203.
    [8] BUGG T D,AHMAD M,HARDIMAN E M,et al.The emerging role for bacteria in lignin degradation and bio-product formation[J].Current Opinion in Biotechnology,2011,22(3):394-400.
    [9] FIERER N,LADAU J,CLEMENTE J C,et al.Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States[J].Science (New York),2013,342(6 158):621-624.
    [10] VAN DER WAL A,GEYDAN T D,KUYPER T W,et al.A thready affair:linking fungal diversity and community dynamics to terrestrial decomposition processes[J].FEMS Microbiology Reviews,2013,37(4):477-494.
    [11] XIA Y,WANG Y B,FANG H H,et al.Thermophilic microbial cellulose decomposition and methanogenesis pathways recharacterized by metatranscriptomic and metagenomic analysis[J].Scientific Reports,2014,4:6 708.
    [12] ROBINSON C H.Controls on decomposition and soil nitrogen availability at high latitudes[J].Plant and Soil,2002,242(1):65-81.
    [13] OSONO T,HAGIWARA Y,MASUYA H.Effects of temperature and litter type on fungal growth and decomposition of leaf litter [J].Mycoscience,2011,52(5):327-332.
    [14] LI R,SHOUJIAN L I,XIANWEI L I,et al.Carbon dynamics of fine root (grass root) decomposition and active soil organic carbon in various models of land use conversion from agricultural lands into forest lands[J].Acta Ecologica Sinica,2011,31(1):137-144.
    [15] POLYAKOVA O,BILLOR N.Impact of deciduous tree species on litterfall quality,decomposition rates and nutrient circulation in pine stands[J].Forest Ecology and Management,2007,253(1-3):11-18.
    [16] KUEHN K A,STEINER D,GESSNER M O.Diel mineralization patterns of standing-dead plant litter:Implications for CO2 flux from wetlands[J].Ecology,2004,85(9):2 504-2 518.
    [17] GE J L.Litter standing crop of shrubland ecosystems in southern China[J].Chinese Journal of Plant Ecology,2017,41(1):11-16.
    [18] WANG Y H,GONG J R,LIU M,et al.Effects of grassland-use on soil respiration and litter decomposition[J].Chinese Journal of Plant Ecology,2015,39(3):239-248.
    [19] FORNARA D A,TILMAN D.Plant functional composition influences rates of soil carbon and nitrogen accumulation[J].Journal of Ecology,2008,96(2):314-322.
    [20] 董瑜,田昆,郭绪虎,等.不同区域气候条件影响下的纳帕海湿地植物叶绿素荧光特性[J].生态环境学报,2013,22(4):588-594.DONG Y,TIAN K,GUO X H,et al.Impacts of regional climate change on chlorophyll fluorescence characteristics of plateau wetland plants in Napahai,Yunnan China[J].Ecology and Environment,2013,22(4):588-594.
    [21] BERG B,LASKOWSKI R.Litter Decomposition:a Guide to Carbon and Nutrient Turnover [M].London:Academic Press,2006.
    [22] 卜涛,张水奎,宋新章,等.几个环境因子对凋落物分解的影响[J].浙江农林大学学报,2013,30(5):740-747.BU T,ZHANG S K,SONG X Z,et al.Effects of several environmental factors on litter decomposition[J].Journal of Zhejiang A&F University,2013,30(5):740-747.
    [23] CORNWELL W K,CORNELISSEN J H,AMATANGELO K,et al.Plant species traits are the predominant control on litter decomposition rates within biomes worldwide[J].Ecology Letters,2008,11(10):1 065-1 071.
    [24] GRA?A M A S,FERREIRA V,CANHOTO C,et al.A conceptual model of litter breakdown in low order streams[J].International Review of Hydrobiology,2015,100(1):1-12.
    [25] 何帆.秦岭林区主要树种凋落叶分解特征研究[D].陕西杨陵:西北农林科技大学,2008.
    [26] CHENG C X,GUO K,MAO Z J,et al.Effects of soil moisture on litter decomposition of three main tree species in Northeast China[J].The Journal of Applied Ecology,2018,29(7):2 251-2 258.
    [27] 刘瑞龙,杨万勤,谭波,等.土壤动物对川西亚高山和高山森林凋落叶第一年不同分解时期N和P元素动态的影响[J].植物生态学报,2013,37(12):1 080-1 090.LIU R L,YANG W Q,TAN B,et al.Effects of soil fauna on N and P dynamics at different stages during the first year of litter decomposition in subalpine and alpine forests of western Sichuan[J].Chinese Journal of Plant Ecology,2013,37(12):1 080-1 090.
    [28] 张川,杨万勤,岳楷,等.高山森林溪流冬季不同时期凋落物分解中水溶性氮和磷的动态特征[J].应用生态学报,2015,26(6):1 601-1 608.ZHANG C,YANG W Q,YUE K,et al.Soluble nitrogen and soluble phosphorus dynamics during foliar litter decomposition in winter in alpine forest streams[J].Chinese Journal of Applied Ecology,2015,26(6):1 601-1 608.
    [29] 岳楷,杨万勤,彭艳,等.岷江上游高山森林凋落叶在冬季河流中的质量损失特征[J].长江流域资源与环境,2015,24(7):1 177-1 184.YUE K,YANG W Q,PENG Y,et al.Foliar litter mass loss in winter in an alpine forest river in the upper reaches of the Minjiang River[J].Resources and Environment in the Yangtze Basin,2015,24(7):1 177-1 184.
    [30] 王行,闫鹏飞,展鹏飞,等.植物质量、模拟增温及生境对凋落物分解的相对贡献[J].应用生态学报,2018,29(2):474-482.WANG H,YAN P F,ZHAN P F,et al.The relative contributions of plant quality,simulated rising temperature,and habitat to litter decomposition[J].Chinese Journal of Applied Ecology,2018,29(2):474-482.
    [31] LI X F,HAN S J,HU Y L,et al.Decomposition of litter organic matter and its relations to C,N and P release in secondary conifer and broadleaf mixed forest in Changbai Mountains[J].The Journal of Applied Ecology,2008,19(2):245-251.
    [32] ZHOU S X,HUANG C D,XIANG Y B,et al.Effects of simulated nitrogen deposition on lignin and cellulose degradation of foliar litter in natural evergreen broad-leaved forest in Rainy Area of Western China[J].The Journal of Applied Ecology,2016,27(5):1 368-1 374.
    [33] MOGHADAM F S,ZIMMER M.Effects of warming and nutrient enrichment on how grazing pressure affects leaf litter-colonizing bacteria[J].Journal of Environmental Quality,2014,43(3):851-858.
    [34] WITHINGTON C L,SANFORD R L JR.Decomposition rates of buried substrates increase with altitude in the forest-alpine tundra ecotone[J].Soil Biology and Biochemistry,2007,39(1):68-75.
    [35] CHRISTENSON L M,MITCHELL M J,GROFFMAN P M,et al.Winter climate change implications for decomposition in northeastern forests:comparisons of sugar maple litter with herbivore fecal inputs[J].Global Change Biology,2010,16(9):2 589-2 601.
    [36] 宋影,辜夕容,严海元,等.中亚热带马尾松林凋落物分解过程中的微生物与酶活性动态[J].环境科学,2014,35(3):1 151-1 158.SONG Y,GU X R,YAN H Y,et al.Dynamics of microbes and enzyme activities during litter decomposition of Pinus massoniana forest in mid-subtropical area [J].Environmental Science,2014,35(3):1 151-1 158.
    [37] LORANGER G,PONGE J F,IMBERT D,et al.Leaf decomposition in two semi-evergreen tropical forests:influence of litter quality[J].Biology and Fertility of Soils,2002,35(4):247-252.
    [38] 韩庆莉,刘丽,张俊忠,等.Biolog法解析敌敌畏及其1株高效降解菌对草莓果实微生物群落代谢活性的影响[J].江苏农业科学,2013,41(8):295-297.HAN Q L,LIU L,ZHANG J Z,et al.Effects of dichlorvos and a high efficient degradation bacteria strain on microbial community metabolic activity in strawberry fruit based on Biolog method[J].Jiangsu Agricultural Sciences,2013,41(8):295-297.
    [39] WIERZCHOS J,CASERO M C,ARTIEDA O,et al.Endolithic microbial habitats as refuges for life in polyextreme environment of the Atacama Desert[J].Current Opinion in Microbiology,2018,43:124-131.
    [40] KNOLL D,SCHREIBER L.Plant-microbe interactions:wetting of ivy (Hedera helix L.) leaf surfaces in relation to colonization by epiphytic microorganisms[J].Microbial Ecology,2000,40(1):33-42.
    [41] YADAV R K,KARAMANOLI K,VOKOU D.Bacterial colonization of the phyllosphere of mediterranean perennial species as influenced by leaf structural and chemical features[J].Microbial Ecology,2005,50(2):185-196.