临泽小枣粗多糖提取动力学模型建立及结构特征分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Extraction Kinetic Modelling and Structural Characteristics of Polysaccharides from Linze Jujube Fruit
  • 作者:徐也 ; 刘晓风 ; 王永刚 ; 任海伟 ; 刘继超 ; 张璇 ; 范文广 ; 杨明俊
  • 英文作者:XU Ye;LIU Xiaofeng;WANG Yonggang;REN Haiwei;LIU Jichao;ZHANG Xuan;FAN Wenguang;YANG Mingjun;School of Life Science and Engineering, Lanzhou University of Technology;
  • 关键词:红枣 ; 多糖 ; 动力学 ; 傅里叶变换红外光谱 ; 原子力显微镜
  • 英文关键词:Ziziphus jujuba Mill.;;polysaccharides;;kinetics;;Fourier transform infrared spectroscopy;;atomic force microscope
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:兰州理工大学生命科学与工程学院;
  • 出版日期:2018-02-09 10:42
  • 出版单位:食品科学
  • 年:2019
  • 期:v.40;No.592
  • 基金:国家自然科学基金地区科学基金项目(31760028;81660581)
  • 语种:中文;
  • 页:SPKX201903002
  • 页数:8
  • CN:03
  • ISSN:11-2206/TS
  • 分类号:10-17
摘要
目的:研究不同温度和料液比下临泽小枣粗多糖(Lingze jujube polysaccharide,LZJP)提取传质动力学,并分析多糖理化性质和显微结构。方法:采用水提醇沉法得到LZJP,以Fick第一定律建立LZJP提取动力学模型,获得速率常数、相对萃余率、活化能和半衰期等模型参数。采用DEAE-52纤维素柱和Sephadex G-100凝胶色谱柱分别纯化得到LZJP3和LZJP4,采用傅里叶变换红外光谱进行多糖官能团结构分析,并利用扫描电子显微镜和原子力显微镜观察不同多糖组分表面显微结构。结果:实验数据与动力学模型计算值良好吻合,且提取过程符合一级动力学模型,该提取过程的活化能为19.266 kJ/mol,表明水提醇沉法可有效地提取LZJP。傅里叶变换红外光谱结果表明,LZJP3和LZJP4均为酸性多糖,且为β-吡喃型多糖。原子力显微镜观察结果显示,LZJP3分子排列疏松、大小形状均一;LZJP4有少量的分子球状聚集体和大量的分散体,大小不均匀。扫描电子显微镜观察结果显示LZJP3多糖呈片状,表面形貌光滑略有破损;LZJP4为分枝状,表面呈现出干燥的褶皱状。
        The extraction of polysaccharides from Linze jujube fruit(LZJP) by hot extraction followed by ethanol precipitation was studied. The physicochemical properties and microstructure of LZJP were analyzed. Based on Fick's first law of diffusion, the mass transfer kinetics of polysaccharides at different temperatures and solid to solvent ratios were investigated and a kinetic model was established for the extraction process. The key model parameters including rate constant, relative extraction rate, activation energy and half-life were calculated. The experimental data were found to be well?tted to the kinetic model and the extraction process obeyed ?rst-order kinetics with an activation energy of 19.266 kJ/mol,indicating that hot water extraction could enable effective extraction of polysaccharides from Linze jujube fruit. Puri?cation of LZJP by DEAE-52 cellulose and Sephadex G-100 column chromatography yielded homogenous polysaccharides LZJP3 and LZJP4, respectively. Fourier transform infrared spectra showed that LZJP3 and LZJP4 were acidic polysaccharides andβ-pyran polysaccharides. Atomic force microscopy indicated that LZJP3 molecules were loosely arranged with uniform size and shape and that LZJP4 had a small amount of globular aggregates and a large number of dispersions with unequal sizes. Scanning electron microscopy showed that LZJP3 was ?aky with a smooth but slightly damaged surface; LZJP4 was branched with a wrinkled and dry surface.
引文
[1]张耀雷,黄立新,张彩虹,等.红枣多糖的研究进展[J].食品工业科技,2013,34(34):349-351.
    [2]李小平.红枣多糖提取工艺研究及其生物功能初探[D].西安:陕西师范大学,2004:1-2.
    [3]东莎莎,杨晓,王春燕.红枣营养成分及综合利用[J].中国果菜,2015,35(12):17-19.DOI:10.3969/j.issn.1008-1038.2015.12.005.
    [4]刘明.金丝小枣酒酿造工艺研究[D].保定:河北农业大学,2009:1-3.
    [5]陈国梁,张金文,陈宗礼,等.红枣多糖提取分离工艺的优化[J].食品科学,2006,27(3):149-152.DOI:10.3321/j.issn:1002-6630.2006.03.032.
    [6]李进伟,丁霄霖.金丝小枣多搪的提取及脱色研究[J].食品科学,2006,27(4):150-154.DOI:10.3321/j.issn:1002-6630.2006.04.034
    [7]斯琴格日乐,恩德.正交优化红枣多糖的超声波提取工艺[J].光谱实验室,2012,29(5):2622-2625.DOI:10.3969/j.issn.1004-8138.2012.05.003.
    [8]WANG Cuntang,CHENG Dai,CAO Jiankang,et al.Antioxidant capacity and chemical constituents of Chinese jujube(Zizphus jujuba Mill.)at different ripeningstages[J].Food Science and Biotechnology,2013,22(3):639-644.
    [9]冯艳风.大枣多糖体外抗凝血活性研究[D].郑州:河南农业大学,2013:16-21.
    [10]李有润,郑青.中草药提取过程的数学模拟与优化[J].中草药,1997,28(7):399-401.
    [11]储茂泉,刘国杰.中药提取过程的动力学[J].药学学报,2002,37(7):559-562.DOI:10.3321/j.issn:0513-4870.2002.07.014.
    [12]陈晋芳.红枣多糖提取分离纯化及其抗氧化性的研究[D].太谷:山西农业大学,2013:18-29.
    [13]DUBIOS M,GILLES K A,HAMILION J K,et al.Colorimetric method for determination of sugars and related substances[J].Analytical Chemistry,1956,28(3):350-356.DOI:10.1021/ac60111a017.
    [14]刘洁,缪晓青.响应面分析法优化莲花蜂花粉多糖提取工艺研究[J].食品科学,2010,31(14):101-105.
    [15]CHU M Q,GU H C,LIU G J.Kinetic model on medicinal herb extraction process[J].Chinese Traditional Herbal Drugs,2000,31:504-506.DOI:10.3321/j.issn:0253-2670.2000.07.012.
    [16]李冬,李稳宏,廉媛媛,等.化香树果序总黄酮提取动力学研究[J].天然产物研究与开发,2011,23(4):689-692;708.DOI:10.3969/j.issn.1001-6880.2011.04.023.
    [17]章凯,黄国林,陈中胜,等.微波辅助萃取柠檬皮中果胶动力学及热力学研究[J].食品科学,2010,31(15):107-111.
    [18]刘晓庚,陈梅梅,陈优生,等.胡萝卜中类胡萝卜素的提取动力学[J].食品科学,2015,36(16):61-65.DOI:10.7506/spkx1002-6630-201516011.
    [19]梁英.黄芩黄酮浸提动力学及浸提工艺研究[D].北京:中国农业大学,2005:4-9.
    [20]SPIRO M,PAGE C M.The kinetics and mechanism of caffeine infusion from coffee:hydrodynamic aspects[J].Journal of Science of Food and Agriculture,1984,35(8):925-930.DOI:10.1002/jsfa.2740350818.
    [21]高义霞,张继,姚健,等.沙蒿多糖分离纯化和理化分析[J].西北师范大学学报(自然科学版),2007(5):94-97.DOI:10.3969/j.issn.1001-988X.2007.05.022.
    [22]刘玉明,钱甜甜,何颖,等.方格星虫多糖中糖醛酸的含量测定[J].时珍国医国药,2012,23(5):1100-1101.DOI:10.3969/j.issn.1008-0805.2012.05.022.
    [23]邱芳萍,张玲,于健.硫酸钡比浊法对鹿茸多糖中硫酸基含量的测定[J].长春工业大学学报(自然科学版),2005,26(4):268-270.DOI:10.3969/j.issn.1674-1374-B.2005.04.004.
    [24]刘芳,陈贵堂,胡秋辉,等.金针菇锌多糖分离纯化及其结构特征[J].食品科学,2014,35(5):1-7.DOI:10.7506/spkx1002-6630-201405001.
    [25]伍乐芹,姜绍芬,张静,等.白术多糖WAM-1结构的色谱分析和原子力显微镜观察[J].天然产物研究与开发,2012,24(5):631-634;609.
    [26]李珺,钟耀广,刘长江.香菇多糖的纯化及电镜分析[J].山西农业科学,2010,38(3):6-9.DOI:10.3969/j.issn.1002-2481.2010.03.02.
    [27]秦德利,贾坤,窦珺荣,等.茶树花多糖超声波辅助热水浸提工艺优化[J].食品工业科技,2015,36(4):215-218;223.
    [28]鄢嫣,张汇,聂少平,等.黑灵芝子实体水溶性多糖的理化性质及抗氧化活性的研究[J].食品科学,2009,30(19):55-60.DOI:10.3321/j.issn:1002-6630.2009.19.010.
    [29]门晓媛,王一飞,朱艳梅,等.裙带菜多糖的研究[J].中草药,2006,37(3):362-365.
    [30]张化朋,张静,南征,等.杏鲍菇多糖WPP2的结构表征及抗肿瘤活性[J].高等学校报化学学报,2013,34(10):2327-2333.