多温蓄冷车设计与车内温度场分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of Multi-temperature Cold Storage Vehicle and Analysis on Temperature Field in Vehicle
  • 作者:刘广海 ; 吴俊章 ; FOSTER ; A ; 谢如鹤 ; 唐海洋 ; 屈睿瑰
  • 英文作者:LIU Guanghai;WU Junzhang;FOSTER A;XIE Ruhe;TANG Haiyang;QU Ruigui;Research Center for Cold Chain and Standardization,Guangzhou University;School of Engineering,London South Bank University;School of Traffic and Transportation Engineering,Central South University;
  • 关键词:多温蓄冷车 ; 相变蓄冷 ; 多温运输 ; 温度场
  • 英文关键词:multi-temperature cold storage vehicle;;phase change cold storage;;multi-temperature transport;;temperature field
  • 中文刊名:NYJX
  • 英文刊名:Transactions of the Chinese Society for Agricultural Machinery
  • 机构:广州大学冷链物流与标准化研究所;伦敦南岸大学工程学院;中南大学交通运输工程学院;
  • 出版日期:2019-02-28 10:06
  • 出版单位:农业机械学报
  • 年:2019
  • 期:v.50
  • 基金:“十二五”国家科技支撑计划项目(2013BAD19B01);; 广东省科技计划重点项目(2017B020206006、2017B090907028、2016B020205004)
  • 语种:中文;
  • 页:NYJX201904035
  • 页数:8
  • CN:04
  • ISSN:11-1964/S
  • 分类号:316-323
摘要
为克服现有蓄冷车控温范围有限、不可多温共配等问题,设计了一款集车载制冷系统、独立蓄冷槽、隔热车厢(冷冻和冷藏单元)、导风槽、内隔板等于一体的多温蓄冷车。该多温蓄冷车将蓄冷槽安装在车厢前端并独立隔热保温。夜间利用低谷电对蓄冷槽内相变蓄冷材料进行充冷;当多温蓄冷运输时,冷冻单元通过车厢前端送风系统将冷能导出并调控,冷藏单元通过导风槽将冷气导入并调控。对车厢内冷冻冷藏单元体积比为1∶1,温度分别设定为-15. 0℃和3. 0℃工况进行了仿真和试验对比分析。研究表明,所构建的多温蓄冷车温度模拟值与试验值的均方根误差在0. 7~1. 1℃之间,总体偏差合理,可较好地反映多温蓄冷车内温度场分布状况。试验结果也表明,该多温蓄冷车车厢冷冻、冷藏单元可有效控温10 h以上,满足配送运输需要;平均温度分别在-14. 2~-12. 9℃和3. 4~4. 2℃间波动,波动范围分别为1. 3℃和0. 8℃,温度绝对不均匀度系数S在1. 2内,较传统蓄冷车平均温度波动值降低了73. 7%,S值降低了50%以上。改变车厢内冷冻冷藏单元体积比的进一步仿真也表明,蓄冷车内温度场分布仍然均匀,可满足实际运输需要。
        A multi-temperature vehicle incorporating phase change material( PCM) was designed to help multi-temperature joint distribution and widen temperature control range,which integrated on-board refrigeration system,the phase change cold storage tank( PCCST),heat-insulated compartment( divided into freezing and cooling unit),air guiding device,thermal insulation board and so on. The PCCST( using 360 kg PCM,which had a melting temperature of-30. 0℃ and a latent heat of 175. 3 kJ/kg)was set independently in front of the vehicle and charged by a refrigeration system by using cheap electricity at night when it was stationary. During transportation,the freezing unit derived and regulated the cold air from PCCST through the air supply system of the heat-insulated carriage,and the cooling unit imported and regulated the cold air through the air guiding duct on one side above the heat-insulated carriage. The results of simulation and experiment were compared and analyzed as follows when the space ratio of freezing unit to cooling unit in the heat-insulate carriage was 1∶ 1,and the temperature was set to be-15. 0℃ and 3. 0℃,respectively. It was showed that the temperature root mean squared error between simulation and test was between 0. 7℃ and 1. 1℃,and the overall deviation was reasonable,which could better reflect the distribution of temperature field in the multi-temperature cold storage vehicle. In addition,the results showed that the multi-temperature cold storage vehicle could maintain the temperature of the products at-15. 0℃ and 3. 0℃ for more than 10 h during the transportation. In fact,the average air temperature of the multi-temperature carriage was distributed between-14. 2 ~-12. 9℃and 3. 4 ~ 4. 2℃ whose fluctuation ranges were 1. 3℃ and 0. 8℃,respectively. The coefficient of absolute non-uniformity of temperature was less than 0. 6 when the freezing unit was-15. 0℃ and less than 1. 2 when the cooling unit was 3. 0℃. The above parametric study showed that the average temperature fluctuation value of novel multi-temperature cold storage vehicle was 73. 7% and the coefficient of absolute non-uniformity was 50% lower than that of the traditional cold storage vehicle. The further simulation of changing the space ratio of freezing unit to cooling unit in the carriage also showed that the temperature field in the carriage was uniform and could meet the actual transportation needs.
引文
[1]秦玉鸣.中国冷链物流的现状与趋势[R].北京:中国物流与采购联合会,2018.
    [2]中国制冷学会.中国制冷行业战略发展研究报告[M].北京:中国建筑工业出版社,2016.
    [3]ASHIKA R,SAVVAS A T.Energy demand and environmental impacts of alternative food transport refrigeration systems[J].Energy Procedia,2017,123:113-120.
    [4]LIU M,WASIM S,FRANK B.Development of a novel refrigeration system for refrigerated trucks incorporating phase change material[J].Applied Energy,2012,92:336-342.
    [5]CHATZIDAKIS S K,CHATZIDAKIS K S.Refrigerated transport and environment[J].International Journal of Energy Research,2004,28(10):887-897.
    [6]TASSOU S A,DE-LILLE G,GE Y T.Food transport refrigeration-approaches to reduce energy consumption and environmental impacts of road transport[J].Applied Thermal Engineering,2009,29(8-9):1467-1477.
    [7]刘国丰.蓄冷式冷藏运输装备的应用研究[D].长沙:中南大学,2007.
    [8]ZAFER U.Passive cooling ceiling system using eutectic(PCM)solutions[C]∥ASHRAE Winter Meeting,2004:176.
    [9]MASHUD A,OLIVER M,MARIO A,et al.Reducing heat transfer across the insulated walls of refrigerated truck trailers by the application of phase change materials[J].Energy Conversion and Management,2010,51(3):383-392.
    [10]DARZI A A R,MAHMOUD J,MOUSA F.Melting and solidification of PCM enhanced by radial conductive fins and nanoparticles in cylindrical annulus[J].Energy Conversion and Management,2016,118:253-263.
    [11]ZARMA I H,HAMDY H,SHINICHI O,et al.Thermal energy storage in phase change materials:applications,advantages and disadvantages[C]∥1st International Conference of Chemical,Energy and Environmental Engineering,2017:321344723.
    [12]谢如鹤,唐海洋,陶文博,等.基于空载温度场模拟与试验的冷藏车冷板布置方式优选[J].农业工程学报,2017,33(24):290-298.XIE Ruhe,TANG Haiyang,TAO Wenbo,et al.Optimization of cold-plate location inrefrigerated vehicles based on simulation and test of no-load temperature field[J].Transactions of the CSAE,2017,33(24):290-298.(in Chinese)
    [13]詹耀立,董奇志,王淞.冷板侧置时铁路冷板冷藏车车内温度场模拟[J].低温工程,2008(3):61-64.ZHAN Yaoli,DONG Qizhi,WANG Song.Simulation on inner temperature field of railroad cold-plate refrigerator car with cold plates laid on side[J].Cryogenics,2008(3):61-64.(in Chinese)
    [14]张哲,郭永刚,田津津,等.冷板冷藏汽车箱体内温度场的数值模拟及试验[J].农业工程学报,2013,29(增刊1):18-24.ZHANG Zhe,GUO Yonggang,TIAN Jinjin,et al.Numerical simulation and experiment of temperature field distribution in box of cold plate refrigerated truck[J].Transactions of the CSAE,2013,29(Supp.1):18-24.(in Chinese)
    [15]李锦,谢如鹤.多温冷藏车降温影响参数敏感度分析[J/OL].农业机械学报,2016,47(7):274-281.LI Jin,XIE Ruhe.Sensitivity analysis of cooling influence parameters for multi-temperature refrigerated truck[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2016,47(7):274-281.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20160738&flag=1.DOI:10.6041/j.issn.1000-1298.2016.07.038.(in Chinese)
    [16]GB/T 22918易腐食品控温运输技术要求[S].北京:中国标准出版社,2009.
    [17]吕恩利,陆华忠,杨洲,等.气调保鲜运输车通风系统阻力特性试验[J].农业机械学报,2011,42(3):120-124.LEnli,LU Huazhong,YANG Zhou,et al.Pressure drop characteristics of the ventilation system in fresh-keeping transportation with controlled atmosphere[J].Transactions of the Chinese Society for Agricultural Machinery,2011,42(3):120-124.(in Chinese)
    [18]王广海,郭嘉明,吕恩利,等.出风道参数对冷藏集装箱温度场的影响[J/OL].农业机械学报,2016,47(10):293-301.WANG Guanghai,GUO Jiaming,LEnli,et al.Effects of air-outlet duct parameters on temperature distribution in freshkeeping container[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2016,47(10):293-301.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20161037&flag=1.DOI:10.6041/j.issn.1000-1298.2016.10.037.(in Chinese)
    [19]翁卫兵,房殿军,李强,等.冷藏运输车厢温度场均匀控制研究[J/OL].农业机械学报,2014,45(1):228-235.WENG Weibing,FANG Dianjun,LI Qiang,et al.Temperature field homogeneity control of refrigerated transport carriage[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2014,45(1):228-235.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20140136&flag=1.DOI:10.6041/j.issn.1000-1298.2014.01.036.(in Chinese)
    [20]赵春江,韩佳伟,杨信廷,等.基于CFD的冷藏车车厢内部温度场空间分布数值模拟[J/OL].农业机械学报,2013,44(11):168-173.ZHAO Chunjiang,HAN Jiawei,YANG Xinting,et al.Numerical simulation of temperature field distribution in refrigerated truck based on CFD[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2013,44(11):168-173.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20131130&flag=1.DOI:10.6041/j.issn.1000-1298.2013.11.030.(in Chinese)
    [21]李锦,谢如鹤,刘广海,等.多温冷藏车降温特性及其影响参数研究[J/OL].农业机械学报,2013,44(2):128-135.LI Jin,XIE Ruhe,LIU Guanghai,et al.Cooling characteristics and influence parameters of multi-temperature refrigerated truck[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2013,44(2):128-135.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20130225&flag=1.DOI:10.6041/j.issn.1000-1298.2013.02.025.(in Chinese)
    [22]刘广海,谢如鹤,邹毅峰,等.多温区冷藏车气密性能影响参数理论分析与试验[J/OL].农业机械学报,2017,48(1):289-296.LIU Guanghai,XIE Ruhe,ZOU Yifeng,et al.Theoretical analysis and experiment of air tightness of multi-temperature refrigerated truck[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2017,48(1):289-296.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20170138&flag=1.DOI:10.6041/j.issn.1000-1298.2017.01.038.(in Chinese)
    [23]ISO 1496-2 Series 1 freight containers-specification and testing-part 2:thermal containers[S].Geneva:International Organization for Standardization,2008.
    [24]TTMA RP No.38-02 Method of testing and rating heat transmission of controlled-temperature vehicles/domestics container[S].Alexandria:Truck Trailer Manufactures Association,2002.
    [25]FOATER A M,SWAIN M J,BARRETT R,et al.Experimental verification of analytical and CFD predictions of infiltration through cold store entrances[J].International Journal of Refrigeration,2003,26(8):918-925.
    [26]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [27]王福军.计算流体力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.