考虑配电网重构的城市多能源配电/气/热网扩展规划
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Expansion Planning of Urban Multi-energy Electricity-Gas-Heating Distribution Network Incorporating Electrical Reconfiguration
  • 作者:周贤正 ; 郭创新 ; 董树锋 ; 陈玮
  • 英文作者:ZHOU Xianzheng;GUO Chuangxin;DONG Shufeng;CHEN Wei;College of Electrical Engineering, Zhejiang University;
  • 关键词:配电网 ; 重构 ; 扩展规划 ; 能源互联网 ; 热网 ; 天然气网 ; 混合整数二次规划
  • 英文关键词:distribution network;;reconfiguration;;expansion planning;;Energy Internet;;heating network;;natural gas network;;mixed integer quadratic programming
  • 中文刊名:DLXT
  • 英文刊名:Automation of Electric Power Systems
  • 机构:浙江大学电气工程学院;
  • 出版日期:2018-09-14 16:44
  • 出版单位:电力系统自动化
  • 年:2019
  • 期:v.43;No.653
  • 基金:国家重点研发计划资助项目(2017YFB0902600);; 国家自然科学基金资助项目(51877190)~~
  • 语种:中文;
  • 页:DLXT201907004
  • 页数:15
  • CN:07
  • ISSN:32-1180/TP
  • 分类号:31-45
摘要
城市多能源配网(UMEDN)处于能源互联网末端,实现UMEDN的协同规划与运行对提升多能量供给的可靠性与经济性至关重要。从能源配送网络的角度出发,提出了融合配电网重构的配电/气/热网扩展规划模型。首先,构建了能源集线器的数学模型;然后,考虑城市配电网、配气网、配热网以及能源集线器的相关约束,通过小时级别时间尺度模拟UMEDN的运行工况,以总成本最小为目标,建立了混合整数二次规划模型。采用所提模型可得到能量源、配送管道及能源集线器的最优建设类型、投运时间以及建设位置。仿真结果表明考虑配电网重构以及能源集线器的UMEDN协同规划能显著提升系统可靠性,降低相关设备的配置容量,减少能量传输损耗,从而显著降低总体规划与运行费用。
        Urban multi-energy distribution network(UMEDN) belongs to the terminal of Energy Internet's planning and operation. The coordinated planning of UMEDN is vital to improve the reliability and economy of energy supply. From the perspective of energy distribution network, an electricity/natural gas/heat distribution network coupling model that integrates electrical reconfiguration is proposed. First, a mathematical model of energy hub(EH) is constructed. Then, considering the constraints of urban distribution network, gas distribution network, heat distribution network and EH, simulating the working condition of UMEDN by hourly time scale, aiming at the minimum total cost, a mixed integer quadratic programming model is established. The best type, time and location of energy source, pipelines and EH via the proposed model are obtained. The simulation results show that the collaborative planning and operation of UMEDN incorporating electrical reconfiguration and EH can significantly improve system reliability, and reduce the capacity of related equipment, decrease energy distribution loss and the overall costs of planning and operation.
引文
[1] 别朝红,王旭,胡源.能源互联网规划研究综述及展望[J].中国电机工程学报,2017,37(22):6445-6462.BIE Zhaohong, WANG Xu, HU Yuan. Review and prospect of planning of energy internet[J]. Proceedings of the CSEE, 2017, 37(22): 6445-6462.
    [2] 周孝信,曾嵘,高峰,等.能源互联网的发展现状与展望[J].中国科学:信息科学,2017,47(2):149-170.ZHOU Xiaoxin, ZENG Rong, GAO Feng, et al. Development status and prospects of the energy internet[J]. Science China, Information Science, 2017, 47(2): 149-170.
    [3] 李亚,刘丽平,李柏青,等.基于改进K-Means聚类和BP神经网络的台区线损率计算方法[J].中国电机工程学报,2016,36(17):4543-4551.LI Ya, LIU Liping, LI Baiqing, et al. Calculation of line loss rate in transformer district based on improved K-Means clustering algorithm and BP neural network[J]. Proceedings of the CSEE, 2016, 36(17): 4543-4551.
    [4] UNSIHUAY-VILA C, MARANGON-LIMA J W, SOUZA A C, et al. A model to long-term, multiage, multistage, and integrated expansion planning of electricity and natural gas systems[J]. IEEE Transactions on Power Systems, 2010, 25(2): 1154-1168.
    [5] BARATI F, SEIFI H, SEPASIAN M S, et al. Multi-period integrated framework of generation, transmission, and natural gas grid expansion planning for large-scale systems[J]. IEEE Transactions on Power Systems, 2015, 30(5): 2527-2537.
    [6] QIU J, YANG H, DONG Z Y, et al. A linear programming approach to expansion co-planning in gas and electricity markets[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3594-3606.
    [7] QIU J, DONG Z Y, ZHAO J H, et al. Low carbon oriented expansion planning of integrated gas and power systems[J]. IEEE Transactions on Power Systems, 2015, 30(2): 1035-1046.
    [8] SALDARRIAGA C A, HINCAPIé R A, SALAZAR H. A holistic approach for planning natural gas and electricity distribution networks[J]. IEEE Transactions on Power Systems, 2013, 28(4): 4052-4063.
    [9] SALDARRIAGA C A, HINCAPIE R A, SALAZAR H. An integrated expansion planning model of electric and natural gas distribution systems considering demand uncertainty[C]// IEEE Power & Energy Society General Meeting, July 26-30, 2015, Denver, USA: 1-5.
    [10] SALDARRIAGA-C C A, SALAZAR H. Security of the Colombian energy supply: the need for liquefied natural gas regasification terminals for power and natural gas sectors[J]. Energy, 2016, 41(4): 349-362.
    [11] SALDARRIAGA C A, HINCAPIE R A, SALAZAR H. A multi-objective analysis for planning electric and natural gas distribution networks[C]// Proceedings of the 2015 IEEE PES Innovative Smart Grid Technologies Latin America, October 5-7, 2015, Montevideo, Uruguay: 456-461.
    [12] 王珺,顾伟,陆帅,等.结合热网模型的多区域综合能源系统协同规划[J].电力系统自动化,2016,40(15):17-24.WANG Jun, GU Wei, LU Shuai, et al. Coordinated planning of multi-district integrated energy system combining heating network model[J]. Automation of Electric Power Systems, 2016, 40(15): 17-24.
    [13] YILDIRIM N, TOKSOY M, GOKCEN G. Piping network design of geothermal district heating systems: case study for a university campus[J]. Energy, 2010, 35(8): 3256-3262.
    [14] 祖国强,肖峻,左磊,等.基于安全域的配电网重构模型[J].中国电机工程学报,2017,37(5):1401-1409.ZU Guoqiang, XIAO Jun, ZUO Lei, et al. A reconfiguration model for distribution network based on security region[J]. Proceedings of the CSEE, 2017, 37(5): 1401-1409.
    [15] 迟吉运,韦钢,李功新,等.复杂有源配电网供电路径快速优化[J].电工技术学报,2017,32(13):219-228.CHI Jiyun, WEI Gang, LI Gongxin, et al. Fast optimization of power supply route for the complex active distribution network[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 219-228.
    [16] 武鹏,程浩忠,刘育权,等.考虑合环约束的配电网重构方法[J].电力系统自动化,2017,41(11):163-168.DOI:10.7500/AEPS20160919002.WU Peng, CHENG Haozhong, LIU Yuquan, et al. Distribution network reconfiguration method considering loop closing constraints[J]. Automation of Electric Power Systems, 2017, 41(11): 163-168. DOI: 10.7500/AEPS20160919002.
    [17] KRAUSE T, ANDERSSON G, FROHLICH K, et al. Multiple-energy carriers: modeling of production, delivery, and consumption[J]. Proceedings of the IEEE, 2010, 99(1): 15-27.
    [18] ZHANG X, SHAHIDEHPOUR M, ALABDULWAHAB A, et al. Optimal expansion planning of energy hub with multiple energy infrastructures[J]. IEEE Transactions on Smart Grid, 2015, 6(5): 2302-2311.
    [19] WANG J J, FU C, YANG K, et al. Reliability and availability analysis of redundant BCHP (building cooling, heating and power) system[J]. Energy, 2013, 38(4): 531-540.
    [20] 曹姗姗,王芃,单晓芳,等.供热系统可靠性评价研究综述[J].中国安全科学学报,2017(12):49-55.CAO Shanshan, WANG Peng, SHAN Xiaofang, et al. A review of progress in reliability evaluation on district heating system[J]. China Safety Science Journal, 2017(12): 49-55.
    [21] TAYLOR J A, HOVER F S. Convex models of distribution system reconfiguration[J]. IEEE Transactions on Power Systems, 2012, 27(3): 1407-1413.
    [22] BARAN M E, WU F F. Network reconfiguration in distribution systems for loss reduction and load balancing[J]. IEEE Transactions on Power Delivery, 1989, 4(2): 1401-1407.
    [23] 顾伟,陆帅,王珺,等.多区域综合能源系统热网建模及系统运行优化[J].中国电机工程学报,2017,37(5):1305-1315.GU Wei, LU Shuai, WANG Jun, et al. Modeling of the heating network for multi-district integrated energy system and its operation optimization[J]. Proceedings of the CSEE, 2017, 37(5): 1305-1315.
    [24] 吴聪,唐巍,白牧可,等.基于能源路由器的用户侧能源互联网规划[J].电力系统自动化,2017,41(4):20-28.DOI:10.7500/AEPS20160802010.WU Cong, TANG Wei, BAI Muke, et al. Energy router based planning of Energy Internet at user side[J]. Automation of Electric Power Systems, 2017, 41(4): 20-28.DOI: 10.7500/AEPS20160802010.