三裂叶薯SPL基因家族鉴定、表达及miR156的调控分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genome-wide Identi?cation and Expression Analysis of SPL Gene Family Regulated by miR156 in Ipomoea triloba
  • 作者:王婷 ; 唐锐敏 ; 王瑞晋 ; 贺立恒 ; 刘霞宇 ; 刘世芳 ; 李润植 ; 贾小云
  • 英文作者:WANG Ting;TANG Rui-min;WANG Rui-jin;HE Li-heng;LIU Xia-yu;LIU Shi-fang;LI Run-zhi;JIA Xiao-yun;College of Life Sciences,Shanxi Agricultural University;Taigu High School of Shanxi;College of Agriculture,Shanxi Agricultural University;
  • 关键词:三裂叶薯 ; SPL基因家族 ; 全基因组鉴定 ; miR156 ; 表达分析
  • 英文关键词:Ipomoea triloba L.;;SPL transcription factor;;genome-wide analysis;;miR156;;expression analysis
  • 中文刊名:ZWYC
  • 英文刊名:Journal of Plant Genetic Resources
  • 机构:山西农业大学生命科学学院;山西省太谷中学;山西农业大学农学院;
  • 出版日期:2019-02-15 07:02
  • 出版单位:植物遗传资源学报
  • 年:2019
  • 期:v.20
  • 基金:国家重点研发专项(2018YFD1000705,2018YFD1000700);; 山西省自然基金项目(201801D121238);; 山西省重点研发项目(201803D221008-6);; 山西省优秀博士来晋工作奖励资金科研项目(SXYBKY2018034);; 山西农谷建设科研专项(SXNGJSKYZX201701-03);; 山西省农业科技成果转化和推广示范项目(SXNKTG201812);; 山西农业大学科技创新基金(2018yz001)~~
  • 语种:中文;
  • 页:ZWYC201903026
  • 页数:14
  • CN:03
  • ISSN:11-4996/S
  • 分类号:255-268
摘要
SQUAMOSA promoter binding protein-like(SPL)是一类广泛存在于植物中的转录因子,均含有一个高度保守的SBP结构域(SQUAMOSA-PROMOTER BINDING PROTEIN)。本研究通过SBP结构域的隐马尔可夫模型、Blastp、CDD和SMART等程序从栽培甘薯的二倍体近缘野生种三裂叶薯(Ipomoea triloba L.)全基因组中鉴定出26个SPL基因家族成员。它们不均匀分布于三裂叶薯的12条染色体上。利用系统进化分析将新鉴定的26个三裂叶薯ItbSPL基因和来源于苔藓植物、单子叶植物、双子叶植物的116个SPL基因构建进化树,并根据拟南芥AtSPL基因家族的分类标准将26个ItbSPL基因家族分为7组。GSDS 2.0基因结构和MEME 4.12.0保守基序分析表明,不同进化分支中的ItbSPL基因的外显子/内含子数目及其蛋白基序组成差异明显。利用拟南芥中已知功能的SPL对ItbSPL基因的功能进行预测,发现三裂叶薯ItbSPL家族基因成员可能与植物开花、逆境胁迫、次生代谢产物等生物学过程相关。通过预测microRNA156(miR156)的作用位点发现,在26个ItbSPL基因中14个含有miR156的作用位点,其中13个ItbSPL基因具有PCR扩增产物。利用qRT-PCR检测13个候选靶基因及miR156在三裂叶薯叶、茎、根中的表达量,发现13个ItbSPL均在茎中的表达量最低,显著低于叶与根中的表达,而miR156则在茎中的表达量最高,在根中的表达量最低,初步推测这13个ItbSPL是miR156的靶基因。以上研究结果为六倍体栽培甘薯SPL基因家族成员的鉴定、进化分析及功能研究提供了方法和基础。
        SQUAMOSA promoter binding protein-like(SPL)is one of the most important transcription factors in plant. The members of this family contain a highly conserved SBP(Squamosa-promoter Binding Protein)domain,and involve in regulating plant growth,secondary metabolism,hormonal signal transduction and abiotic stress. In this study,twenty-six SPL family genes(ItbSPL)were identified using the SBP Hidden Markov Model(HMM),Blastp,CDD and SMART from Ipomoea triloba L.(I.triloba)genome,which is a wild diploid progenitor of the sweetpotato. The ItbSPL members were unevenly distributed on 12 of the 15 chromosomes of I.triloba L.. Phylogenetic analysis with the newly identi?ed 26 ItbSPL genes and 116 SPL genes from bryophytes,dicotyledons and monocotyledons showed that the 26 ItbSPL genes were classi?ed into 7 sub-groups based on the similarity of conserved SBP domain with the orthologs in Arabidopsis thaliana(L.)Heynh.. By analyzing gene structure and motif composition,the number of exons and motif of ItbSPL were different among different evolutionary clades. SPL genes from I.triloba L.and Arabidopsis were grouped together,suggesting a similar function of SPL genes. PsRNA Target prediction suggested 14 of the 26 ItbSPL genes contained complementary sequences of miR156,and 13 ItbSPL genes of them had PCR production. Furthermore,q RT-PCR showed the 13 ItbSPL genes had lowest expression in stem,where the expression of miR156 was highly accumulated,suggesting that the 13 ItbSPL genes might be the targets of miR156. Taken together,these results will be helpful for future studies on the identi?cation,evolutionary and function analysis of SPL genes in hexaploid sweetpotato.
引文
[1] Poethig R S. The past, present, and future of vegetative phase change. Plant Physiology, 2010, 154(2):541-544
    [2] Huijser P, Schmid M. The control of developmental phase transitions in plants. Development, 2011,138(19):4117-4129
    [3] Klein J, Saedler H, Huijser P. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Molecular and General Genetics,1996,250(1):7-16
    [4] Gandikota M, Birkenbihl R P, Ho hmann S, Cardon G H,Saedler H,Huijser P. The miRNA156/157 recognition element in the 3'UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. The Plant Journal, 2007, 49(4):683-693
    [5] Zhang Y, Schwarz S, Saedler H, Huijser P. SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis. Plant Molecular Biology, 2007,63(3):429-439
    [6] Tripathi R,Goel R,Kumari S,Kumari S,Dahuja A. Genomic organization, phylogenetic comparison, and expression profiles of the SPL family genes and their regulation in soybean. Development Genes and Evolution, 2017, 227(2):1-19
    [7] Salinas M, Xing S, Ho hmann S, Berndtgen R, Huijser P.Genomic organization, phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato. Planta,2012, 235(6):1171-1184
    [8] Xie K, Wu C Q, Xiong L Z. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-bindinglike transcription factors and microRNA156 in rice. Plant Physiology, 2006, 142(1):280-293
    [9] Chuck G, Whipple C, Jackson D, Hake S-The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries.Development, 2010, 137(8):1243-1250
    [10]雷凯健,任晶,朱园园,安国勇.拟南芥SPL1基因参与调节低磷条件下的根际酸化反应.植物学报,2016,51(2):184-193Lei K J, Ren J, Zhu Y Y, An G Y. SPL1 is Involved in the regulation of rhizosphere acidification reaction under low phosphate condition in Arabidopsis. Chinese Bulletin of Botany, 2016, 51(2):184-193
    [11] Schwarz S, Grande A, Bujdoso N, Saedler H, Huijser P. The microRNA regulated SBP-box genes SPL9 and SPL 15 control shoot maturation in Arabidopsis-Plant Molecular Biology,2008,67(1-2):183-195
    [12] Gou J Y, Felippes F F, Liu C J, Weigel D, Wang J W. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. The Plant Cell,2011,23(4):1512-1522
    [13] Yu N, Cai W J, Wang S C, Shan C M, Wang L J, Chen X Y.Temporal control of trichome distribution by microRNA156-Targeted SPL genes in Arabidopsis thaliana. The Plant Cell,2010, 22(7):2322-2335
    [14] Yu S,Galva o V C,Zhang Y C,Horrer D,Zhang T Q,Hao Y H,Feng Y Q, Wang S, Schmid M, Wang J W. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE transcription factors. The Plant Cell, 2012,24(8):3320-3332
    [15] Gao R, Wang Y, Gruber M, Hannoufa A. MiR156/SPL10modulates lateral root development, branching and leaf morphology in Arabidopsis by Silencing AGAMOUS-LIKE 79-Frontiers in Plant Science, 2018, 8:2226-2238
    [16] Jiao Y,Wang Y,Xue D,Wang J,Yan M,Liu G,Dong G,Zeng D, Lu Z, Zhu X, Qian Q, Li J. Regulation of OsSPL14by OsmiR156 defines ideal plant architecture in rice. Nature Genetics,2010,42(6):541-544
    [17] Miura K, Ikeda M, Matsubara A, Song X J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature Genetics, 2010,42(6):545-549
    [18]Wang S,Li S,Liu Q,Wu K,Zhang J Q,Wang S S,Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X,Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Science Foundation in China, 2015,47(3):949-955
    [19] Manning K,Tor M,Poole M,Hong Y,Thompson A J,King G J,Giovannoni J J, Seymour G B. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genetics, 2006, 38(8):948-952
    [20] Jia X Y,Ding N,Fan W X,Yan J,Gu Y Y,Tang X Q,Li R Z, Tang G L. Functional plasticity of miR165/166 in plant development revealed by small tandem target mimic. Plant Sciences, 2015,233(4):11-21
    [21] Yu S, Lian H, Wang J W. Plant developmental transitions:the role of microRNAs and sugars. Current Opinion Plant Biology,2015,27:1-7
    [22] Rhoades M W, Reinhart B J, Lim L P, Burge C B, Bartel B,Bartel D P. Prediction of plant microRNA targets. Cell, 2002,110(4):513-520
    [23] Jung J H, Seo P J, Kang S K, Park C. M. MiR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5genes in Arabidopsis developmental transitions. Plant Molecular Biology,2011,76(1-2):35-45
    [24] May P,Liao W,Wu Y J,Shuai B,McCombie W R,Zhang M Q, Liu Q A. The effects of carbon dioxide and temperature on microRNA expression in Arabidopsis development. Nature Communications, 2013,4:2145-2155
    [25] Kim J J, Lee J H, Kim W H, Jung H S, Huijser P, Ahn J H.The miR156-SPL3 module regulates ambient temperatureresponsive flowering via FT in Arabidopsis thaliana. Plant Physiology, 2012, 159(1):461-478
    [26] Liu Q C. Improvement for agronomically important traits by gene engineering in sweetpotato. Breeding Science, 2017,67(1):15-26
    [27]荪一钧,王娇,戴习彬,唐君,赵冬兰,张安,周志林,曹清河·303份甘薯地方种SSR遗传多样性与群体结构分析·植物遗传资源学报,2018, 19(2):243-251Su Y J,Wang J,Dai X B,Tang J,Zhao D L,Zhang A,Zhou Z L, Cao Q H. Genetic diversity and population structure analysis of 303 sweetpotato landraces using ssr markers. Journal of Plant Genetic Resources, 2018, 19(2):243-251
    [28]刘中华,林志坚,李华伟,许泳清,李国良,邱永祥,邱思鑫,汤浩·基于SRAP标记的甘薯遗传多样性与起源演化分析·植物遗传资源学报,2018, 19(3):468-477Liu Z H,Lin Z J,Li H W,Xu Y Q,Li G L,Qiu Y X,Qiu S X, Tang H. The genetic diversity, origin and evolution of sweet potato(ipomoea batatas(L-)Lam.)revealed by srap markers. Journal of Plant Genetic Resources, 2018, 19(3):468-477
    [29]王卫强,钟巍然,黄世龙,张晓春,谢明菊,任自明,谷明禹,余国东·紫色甘薯在重庆的开发利用前景·农业科技通讯,2009(7):10-11Wang W Q,Zhong W R,Huang S L,Zhang X C,Xie M J,Ren Z M, GUO M Y, Yu G D. Prospects for the development and utilization of purple sweet potato in Chongqing-Bulletin of Agricultural Science and Technology, 2009(7):10-,1
    [30]唐君,周志林,赵冬兰,曹清河,马代夫·76份特用甘薯种质资源的鉴定评价·植物遗传资源学报,2012, 13(2):195-200Tang J, Zhou Z L, Zhao D L, Cao Q H, Ma D F. Identification and evaluation of 76 special utilized sweetpotato germplasm resources. Journal of Plant Genetic Resources, 2012, 13(2):195-200
    [31]袁为洲,刘朝晖,曹秀桃·红薯产业发展的新趋势·粮食科技与经济,2006, 31(2):36-37Yuan W Z, Liu Z H, Cao X T. New trends in the development of sweet potato industry. Grain Technology and Economy,2006, 31(2):36-37
    [32]石璇,王茹媛,唐君,李宗芸,罗永海·利用简化基因组技术分析甘薯种间单核苷酸多态性·作物学报,2016, 42(5):641-647Shi X, Wang R Y, Tang J, Li Z Y, Luo Y H. Analysis of interspecific SNPs in sweetpotato using a reduced-representation genotyping technology. Acta Agronomica Sinica, 2016,42(5):641-647
    [33]曹清河,张安,李鹏,李洪民,谢逸萍,李秀英,王欣,马代夫.甘薯近缘野生种的抗病性鉴定与新型种间杂种的获得·植物遗传资源学报,2009, 10(2):224-229Cao Q H, Zhang A, Li P, Li H M, Xie Y P, Li X Y, Wang X,Ma D F.Identification of the wild elite resistant resources and breeding of novel interspecies hybrids. Journal of Plant Genetic Resources, 2009, 10(2):224-229
    [34] Artimo P,Jonnalagedda M,Arnold K,Baratin D,Csardi G,de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E.ExPASy:SIB bioinformatics resource portal. Nucleic Acids Research, 2012,40(W1):597-603
    [35]Kumar S,Stecher G,Tamura K. MEGA7:Molecular evolutionary genetics analysis version 7.0 for bigger datasets.Molecular Biology and Evolution, 2016,33(7):1870-1874
    [36] Lin J S,Lin C C,Lin H H,Chen Y C,Jeng S T. MicroR828regulates lignin and H2O2 accumulation in sweet potato onwounding. New Phytologist, 2012, 196(2):427-440
    [37] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method.Methods, 2001,25(4):402-408
    [38] Yamasaki K,Kigawa T,Inoue M,Tateno M,Yamasaki T,Yabuki T, Aoki M, Seki E, Matsuda T, Nunokawa E. A novel zinc-binding motif revealed by solution structures of DNAbinding domains of Arabidopsis SBP-family transcription factors. Journal of Molecular Biology, 2004, 337(1):49-63
    [39] Michaely P, Bennett V, The ANK repeat:A ubiquitous motif involved in macromolecular recognition. Trends in Cell Biology, 1992,2(5):127-129
    [40] Garciamolina A, Xing S, Huijser P. Functional characterisation of Arabidopsis SPL7 conserved protein domains suggests novel regulatory mechanisms in the Cu deficiency response. BMC Plant Biology, 2014, 14(1):231-244
    [41] Usami T, Horiguchi G, Yano S, Hirokazu T. The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty. Development, 2009,136(6):955-964
    [42] Wei S, Gruber M Y, Yu B, Gao M J, Khachatourians G G,Hegedus D D, Parkin I A, Hannoufa A. Arabidopsis mutant sk156 reveals complex regulation of SPL15 in a miR156-controlled gene network. BMC Plant Biology, 2012, 12(1):169-185
    [43] Hou H M,Li J,Gao M, Singer S D, Wang H,Mao L Y,Fei Z J,Wang X P. Genomic organization, phylogenetic comparison and differential expression of the SBP-box family genes in grape.PLoS One, 2013,8(3):59358-59372
    [44] Cheng H, Hao M, Wang W, Mei D, Tong C, Wang H, Liu J, Fu L, Hu Q. Genomic identification, characterization and differential expression analysis of SBP-box, gene family in Brassica napus. BMC Plant Biology, 2016, 16(1):196-212
    [45] Xing S, Salinas M, Ho h S, Bemdtgen R, Huijser P. miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis-The Plant Cell,2010, 22(12):3935-3950