掺Br氮化碳-纤维素复合材料的制备及其对亚甲基蓝的光催化降解性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Photodegradation of methylene blue over Br-doped carbon nitride/cellulose composite
  • 作者:钱周琦 ; 杜晓琳 ; 刘琳
  • 英文作者:QIAN Zhouqi;DU Xiaolin;LIU Lin;Silk Institute,College of Materials and Textiles,Zhejiang Sci-Tech University;
  • 关键词:掺Br氮化碳 ; 宏观三维光催化剂 ; 多孔网络结构 ; 力学性能 ; 光催化降解
  • 英文关键词:Br-doped carbon nitride;;macroscopic 3D photocatalyst;;porous network structure;;mechanical strength;;photodegradation
  • 中文刊名:ZJSG
  • 英文刊名:Journal of Zhejiang Sci-Tech University(Natural Sciences Edition)
  • 机构:浙江理工大学材料与纺织学院丝绸学院;
  • 出版日期:2018-02-26 16:41
  • 出版单位:浙江理工大学学报(自然科学版)
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金项目(51303159,51672251);; 浙江省公益技术研究计划(LGF18E030003)
  • 语种:中文;
  • 页:ZJSG201806006
  • 页数:6
  • CN:06
  • ISSN:33-1338/TS
  • 分类号:39-44
摘要
为了提高石墨相氮化碳(g-C_3N_4)的光催化活性并实现其回收再利用,首先制备掺Br氮化碳,再将其与纤维素复合,制备具有宏观三维多孔结构的掺Br氮化碳-纤维素复合材料,研究其对亚甲基蓝(MB)的光催化活性。研究结果表明:制备得到的掺Br氮化碳-纤维素复合材料具有良好的三维多孔结构,掺Br氮化碳很好地负载于复合材料表面及孔壁;掺Br氮化碳-纤维素复合材料具还展现出较好的力学性能,当压缩应变为80%时,压缩应力达到207kPa。掺Br氮化碳-纤维素复合材料能够在160min光照时间内降解98%的亚甲基蓝,优于掺Br氮化碳;在H_2O_2辅助下,其降解效率在120min能达到99.5%。宏观三维的掺Br氮化碳-纤维素复合材料极易回收再利用,经4次循环,其对亚甲基蓝的光催化效率仍高于85%。研究结果对于实现宏观三维掺Br氮化碳-纤维素复合材料对规模化水污染治理具有一定的参考意义。
        In order to improve the photocatalytic activity and cycle performance of graphite phase carbon nitride(g-C_3 N_4),the Br-doped carbon nitride and macroscopic three-dimensional Br-doped carbon nitride-cellulose composite was prepared,and its photocatalytic activity of methylene blue(MB)was studied.The results showed that the obtained Br-doped carbon nitride-cellulose composite exhibited threedimiensional porous structure.The Br-doped carbon nitride was well supported on the surface of the composite.Meanwhile,the Br-doped carbon nitride-cellulose composite possessed good mechanical property,the compressive stress reached 207 kPa when the compressive strain was 80%.Br-doped carbon nitride-cellulose composite exhibited better photocatalytic activity than Br-doped carbon nitride and could remove 98% of MB after irradiation for 160 min;with the mediation of H_2 O_2,the photodegradation efficiency of Br-doped carbon nitride-cellulose composite reached 99.5%after 120 min light irradiation.As a macroscopic 3D photocatalyst,Br-doped carbon nitride-cellulose composite can been easily reused,and the photodegradation rate of MB by Br-doped carbon nitride-cellulose composite can still higher than 85%after four cycles.This article has a certain guiding significance for the application of the macroscopic threedimensional Br-doped carbon nitride-cellulose composite in large-scale water pollution treatment.
引文
[1]Liu Y,Yuan X,Wang H,et al.Novel visible light-induced g-C3N4-Sb2S3/Sb4O5Cl2composite photocatalysts for efficient degradation of methyl orange[J].Catalysis Communications,2015,70:17-20.
    [2]Kang Y,Yang Y,Yin L C,et al.An amorphous carbon nitride photocatalyst with greatly extended visible-lightresponsive range for photocatalytic hydrogen generation[J].Advanced Materials,2015,27(31):4572-4577.
    [3]Yu J,Wang K,Xiao W,et al.Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nanocomposite photocatalysts[J].Physical Chemistry Chemical Physics,2014,16(23):11492-11501.
    [4]Zhao Z,Sun Y,Dong F.Graphitic carbon nitride based nanocomposites:A review[J].Nanoscale,2015,7(1):15-37.
    [5]Zhang J,Zhang M, Yang C,et al. Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface[J].Advanced Materials,2014,26(24):4121-4126.
    [6]Zhang Y, Mori T,Ye J,et al.Phosphorus-doped carbon nitride solid:enhanced electrical conductivity and photocurrent generation[J].Journal of the American Chemical Society,2010,132(18):6294-6295.
    [7]Zhang G,Zhang M,Ye X,et al.Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution[J].Advanced Materials,2014,26(5):805-809.
    [8]Zhang J,Sun J, Maeda K,et al.Sulfur-mediated synthesis of carbon nitride:Band-gap engineering and improved functions for photocatalysis[J].Energy&Environmental Science,2011,4(3):675-678.
    [9]Yan S,Li Z,Zou Z.Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation[J].Langmuir,2010,26(6):3894-3901.
    [10]Lan Z,Zhang G,Wang X.A facile synthesis of Brmodified g-C3N4semiconductors for photoredox water splitting[J].Applied Catalysis B:Environmental,2016,192:116-125.
    [11]Chen X,Kuo D H,Lu D.Nanonization of g-C3N4with the assistance of activated carbon for improved visible light photocatalysis[J].RSC Advances,2016(6):66814-66821.
    [12]Yuan Z,Zhang J,Jiang A,et al.Fabrication of cellulose self-assemblies and high-strength ordered cellulose films[J].Carbohydrate Polymers,2015,117:414-421.
    [13]Sai H,Fu R,Xing L,et al.Surface modification of bacterial cellulose aerogelsweb-like skeleton for oil/water separation[J].ACS Applied Materials&Interfaces,2015,7(13):7373-7381.
    [14]荣新山.半导体(金属氧化物,氮化碳)基复合材料的制备及其吸附/光催化性能研究[D].镇江:江苏大学,2016:83-92.