多级结构α-MoO_3空心微球的构筑及其对有机染料的吸附性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Construction of Hierarchical α-MoO_3 Hollow Microspheres and Its High Adsorption Performance towards Organic Dyes
  • 作者:隋丽丽 ; 王润 ; 赵丹 ; 申书昌 ; 孙立 ; 徐英明 ; 程晓丽 ; 霍丽华
  • 英文作者:SUI Li-Li;WANG Run;ZHAO Dan;SHEN Shu-Chang;SUN Li;XU Ying-Ming;CHENG Xiao-Li;HUO Li-Hua;School of Chemistry and Chemical Engineering,Qiqihar University;Key Labora tory of Functional Inorganic Material Chemistry,Ministry of Education,School of Chemistry and Materials Science,Heilongjiang University;
  • 关键词:多级结构 ; α-MoO3空心球 ; 溶剂热法 ; 亚甲基蓝 ; 吸附性能
  • 英文关键词:hierarchical structure;;α-MoO3 hollow microsphere;;solvothermal method;;methylene blue;;adsorption performance
  • 中文刊名:WGCL
  • 英文刊名:Journal of Inorganic Materials
  • 机构:齐齐哈尔大学化学与化学工程学院;黑龙江大学化学化工与材料学院功能无机材料化学教育部重点实验室;
  • 出版日期:2019-03-04 16:30
  • 出版单位:无机材料学报
  • 年:2019
  • 期:v.34;No.232
  • 基金:国家自然科学基金(21771060,51802167);; 黑龙江省青年科学基金(QC2018015);; 黑龙江省教育厅资助项目(135109206,135209221);; 黑龙江省普通本科高等学校青年人才培养计划(UNPYSCT-2016088)~~
  • 语种:中文;
  • 页:WGCL201902011
  • 页数:8
  • CN:02
  • ISSN:31-1363/TQ
  • 分类号:77-84
摘要
具有多级结构的半导体金属氧化物,其特有的立体空间结构使材料具有超高活性,在吸附领域具有应用潜力。研究采用简单的一步溶剂热法制备了空心球状的MoO_2前驱体,400℃热处理后得到多级结构α-MoO_3空心微球。空心球的直径为600~800 nm,由宽度约70 nm的纳米棒构筑而成。该球状α-MoO_3纳米材料对亚甲基蓝(MB)染料具有优良的吸附性能。当α-MoO_3吸附剂用量为0.5 g/L、MB染料浓度为20 mg/L、吸附时间为5 min时,移除率可达到73.40%。吸附60min时,吸附达到平衡,此后移除率为97.53%~99.65%。该吸附动力学过程符合拟二级动力学模型,吸附等温线符合Langmuir模型拟合,最大吸附量为1543.2 mg/g。α-MoO_3微球由于多级且中空的纳米结构,对MB染料具有用量少、吸附速率快和吸附完全等特点。该材料可以用于吸附废水中其他有机染料。
        Hierarchical semiconducting metal oxide is highly active due to its special stereostructure, which is potential adsorbent for dye contaminants. Precursors of MoO_2 hollow spheres were successfully synthesized via a simple and one-step solvothermal method. And hierarchical α-MoO_3 hollow microspheres were obtained after subsequent calcination at 400 ℃. Diameters of the α-MoO_3 microspheres were about 600-800 nm which were assembled by nanorods with a width of 70 nm. The as-obtained α-MoO_3 nanomaterials presented excellent adsorption performance for methylene blue(MB). MB removal percentage attained 73.40% in the first 5 min when the concentration of α-MoO_3 absorbent was 0.5 g/L in MB solution at the concentration of 20 mg/L. The equilibrium was established after adsorption for 60 min, and the removal percentages stabilized in the range of 97.53%-99.65%. Their adsorption kinetics was well fitted to a pseudo-second-order model. The adsorption isotherm conformed to Langmuir isotherm model, and the maximum uptake capacity was 1543.2 mg/g. The α-MoO_3 microspheres are cost-effective, fast and complete for MB removal owing to its hierarchical and hollow nanostructures, which also can be employed for adsorption of other organic dyes in waste water.
引文
[1]KUMAR K Y,ARCHANAr S,VINUTH T N,et al.Superb adsorption capacity of hydrothermally synthesized copper oxide and nickel oxide nanoflakes towards anionic and cationic dyes.J.Sci.:Adv.Mater.Devices,2017,2(2):183-191.
    [2]JIN Y J,LI N,LIU H Q,et al.Highly efficient degradation of dye pollutants by Ce-doped MoO3 catalyst at room temperature.Dalton Trans.,2014,43(34):12860-12870.
    [3]HOKKANEN S,BHATNAGAR A,SILLANPAA M.A review on modification methods to cellulose-based adsorbents to improve adsorption capacity.Water Res.,2016,91:156-173.
    [4]TIAN P,HAN X Y,NING G L,et al.Synthesis of porous hierarchical MgO and its superb adsorption properties.ACS Appl.Mater.Interfaces,2013,5(23):12411-12418.
    [5]RONG X S,QIU F X,QIN J,et al.A facile hydrothermal synthesis,adsorption kinetics and isotherms to Congo Red azo-dye from aqueous solution of NiO/grapheme nanosheets adsorbent.J.Indust.Eng.Chem.,2015,26:354-363.
    [6]SONG L X,YANG Z K,TENG Y,et al.Nickel oxide nanoflowers:formation,structure,magnetic property and adsorptive performance towards organic dyes and heavy metal ions.J.Mater.Chem.A,2013,1(31):8731-8736.
    [7]ZHU D Z,ZHANG J,SONG J M,et al.Efficient one-pot synthesis of hierarchical flower-likeα-Fe2O3 hollow sphereswith excellent adsorption performance for water treatment.Appl Surf.Sci.,2013,284:855-861.
    [8]LIU B X,WANG J S,WU J S,et al.Controlled fabrication of hierarchical WO3 hydrates with excellent adsorption performance.J.Mater.Chem.A,2014,2(6):1947-1954.
    [9]LEE J H.Gas sensors using hierarchical and hollow oxide nanostructures:overview.Sens.Actuators,B,2009,140(1):319-336.
    [10]LIU Y,FENG P Z,WANG Z,et al.Novel fabrication and enhanced photocatalytic MB degradation of hierarchical porous monoliths of MoO3 nanoplates.Sci.Rep.,2017,7(1):1845-1854.
    [11]WANG M,SONG X X,CHENG X L,et al.Highly selective and efficient adsorption dyes selfassembled by 3D hierarchical architecture of molybdenum oxide.RSC Adv.,2015,5(104):85248-85255.
    [12]SUI L L,ZHANG X F,CHENG X L,et al.Au-Loaded hierachical MoO3 hollow spheres with enhanced gas sensing performance for the detection of BTX(benzene,toluene,and xylene)and the sensing mechanism.ACS Appl.Mater.Interfaces,2017,9(2):1661-1670.
    [13]ZHANG J,SONG P,LI J,et al.Template-assisted synthesis of hierarchical MoO3 microboxes and their high gas-sensing performance.Sens.Actuators,B,2017,249:458-466.
    [14]XIA Y C,WU C S,ZHAO N Y,et al.hierarchical nanostructures for excellent performance ethanol sensor.Mater.Lett.,2016,171:117-120.
    [15]YAN H H,SONG P,ZHANG S,et al.Facile fabrication and enhanced gas sensing properties of hierarchical MoO3 nanostructures.RSC Adv.,2015,5(89):72728-72735.
    [16]WANG S T,ZHANG Y G,MA X C,et al.Hydrothermal route to single crystallineα-MoO3 nanobelts and hierarchical structures.Solid State Commun.,2005,136(5):283-287.
    [17]YU X Y,ZHANG G X,LU Z Y,et al.Green sacrificial template fabrication of hierarchical MoO3 nanostructures.CrystEngComm,2014,16(19):3935-3939.
    [18]LIANG R L,CAO H Q,QIAN D,et al.MoO3 nanowires as electrochemical pseudocapacitor materials.Chem.Commun.,2011,47(37):10305-10307.
    [19]JIAN J B,LIU J L,PENG S J,et al.Facile synthesis ofα-MoO3nanobelts and their pseudocapacitive behavior in an aqueous Li2SO4 solution.J.Mater.Chem.A.,2013,1(7):2588-2594.
    [20]CHEN D L,LIU M N,YIN L,et al.Single-crystalline MoO3 nanoplates:topochemical synthesis and enhanced ethanol-sensing performance.J.Mater.Chem.,2011,21(25):9332-9342.
    [21]XU B Y,LI Y,WANG G F,et al.In situ synthesis and high adsorption performance of MoO2/Mo4O11 and MoO2/MoS2 composite nanorods by reduction of MoO3.Dalton Trans.,2015,44(13):6224-6228.
    [22]LEI C S,ZHU X F,ZHU B C,et al.Hierarchical NiO-SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water.J.Colloid Inter.Sci.,2016,466:238-246.
    [23]ZHANG P P,MA X M,GUO Y M,et al.Size-controlled synthesis of hierarchical NiO hollow microspheres and the adsorption for Congo red in water.Chem.Eng.J.,2012,189-190(5):188-195.
    [24]DHANAVEL S,NIVETHAA E A K,DHANAPA K,et al.?-MoO3/polyaniline composite for effective scavenging of Rhodamine B,Congo red and textile dye effluent.RSC Adv.,2016,6(34):28871-28886.
    [25]MA Y,JIA Y L,JIA Z B,et al.Facile synthesizeα-MoO3 nanobelts with high adsorption property.Mater.Lett.,2015,157:53-56.
    [26]LI J,LIU X H,HAN Q F,et al.Formation of WO3 nanotube-based bundles directed by NaHSO4 and its application in water treatment.J.Mater.Chem.A,2013,1(7):1246-1253.
    [27]ZHU J,WANG S L,XIE S H,et al.Hexagonal single crystal growth of WO3 nanorods along a[110]axis with enhanced adsorption capacity.Chem.Commun.,2011,47(15):4403-4405.
    [28]JEON S,YONG K.Morphology-controlled synthesis of highly adsorptive tungsten oxide nanostructures and their application to water treatment.J.Mater.Chem.,2010,20(45):10146-10151.
    [29]PERES E C,SLAVIERO J C,CUNHA A M,et al.Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption.J.Environ.Chem.Eng.,2018,6(1):649-659.
    [30]SAINI J,GARG V K,GUPTA R K.Removal of methylene blue from aqueous solution by Fe3O4@Ag/SiO2 nanospheres:synthesis,characterization and adsorption performance.J.Mol.Liq.,2018,250:413-422.