低温切削奥氏体304不锈钢残余应力研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation into Residual Stress of Austenitic 304 Stainless Steel at Cryogenic Temperature
  • 作者:彭泽宇 ; 颜培
  • 英文作者:PENG Zeyu;YAN Pei;School of Mechanical Engineering,Beijing Institute of Technology;
  • 关键词:304不锈钢 ; 低温切削 ; 残余应力 ; 有限元模拟
  • 英文关键词:304 stainless steel;;cryogenic cutting;;residual stress;;finite element modeling
  • 中文刊名:BIGO
  • 英文刊名:Acta Armamentarii
  • 机构:北京理工大学机械与车辆学院;
  • 出版日期:2019-06-15
  • 出版单位:兵工学报
  • 年:2019
  • 期:v.40;No.267
  • 基金:国家自然科学基金项目(51505034)
  • 语种:中文;
  • 页:BIGO201906018
  • 页数:6
  • CN:06
  • ISSN:11-2176/TJ
  • 分类号:154-159
摘要
为了改善奥氏体304不锈钢的加工质量,采用预冷工件低温切削方法切削奥氏体304不锈钢,研究其残余应力变化情况。通过有限元软件ANSYS分析液氮浸泡工件温度场分布,指导实际预冷工件试验。实施在不同预冷温度下的低温车削试验,使用测力仪器测量切削过程中的切削力,并通过有限元软件DEFORM模拟不同低温条件下的车削过程,利用后处理功能观察车削过程温度分布。研究结果表明:低温切削可以增加切削过程的切削力,同时减少切削过程中工件表层的温度差,使得残余拉应力减小或者残余压应力增大,且温度越低这种效果越明显。
        In order to improve the workability of Austenitic 304 stainless steel,the residual stress of Austenitic 304 stainless steel was studied by cutting the austenitic stainless steel at cryogenic. The temperature field distribution of liquid nitrogen immersed workpiece is analyzed by the finite element software ANSYS,guiding the actual precooling workpiece test. The residual stress of metal cutting is qualitatively analyzed. The cryogenic cutting test under different precooling temperature is carried out,and the cutting force in cutting process is measured by force measuring instrument. DEFORM finite element software is used to simulate the process of cutting at different temperatures,and the temperature distribution in the cutting process is observed by the post processing function. The results show that the cutting force of the cutting process can be increased and the temperature defference of workpiece surface is decreased during the cryogenis cutting. This makes the residual tensile stress decrease or the residual compressive stress increase,and the lower the temperature is,the more obvious the effect is.
引文
[1]鲁效峰.机械加工制造中的绿色制造工艺分析[J].内燃机与配件,2018(9):119-120.LU X F. Analysis of green manufacturing process in machined manufacturing[J]. Internal Combustion Engine and Accessories,2018(9):119-120.(in Chinese)
    [2]万宏强.低温切削技术及其应用研究[J].煤矿机械,2007,28(3):90-92.WAN H Q. Cryogenic cutting technology and its application[J].Coal Mine Machinery,2007,28(3):90-92(in Chinese)
    [3]孙惠斌.航空难加工材料的深冷加工技术研究进展[J].航空制造技术,2017(8):16-21.SUN H B. Research progress of cryogenic processing technology for aviation refractory materials[J]. Aeronautical Manufacturing Technology,2017(8):16-21.(in Chinese)
    [4] DHANANCHEZIAN M,PRADEEP KUMAR M. Cryogenic turning of the Ti-6Al-4V alloy with modified cutting tool inserts[J].Cryogenics,2010,51(1):34-40.
    [5] UMBRELLO D,PU Z,CARUSO S,et al. The effects of cryogenic cooling on surface integrity in hard machining[J]. Procedia Engineering,2011,19:371-376.
    [6] PATRIK D,FREDRIK G,MICHAEL J. The influence of rake angle,cutting feed and cutting depth on residual stresses in hard turning[J]. Journal of Materials Processing Technology,2004,147(2):181-184.
    [7] FREDRIK G,MARCEL E,MICHAEL J. The influence of cutting parameters on residual stresses and surface topography during hard turning of 18MnCr5 case carburised steel[J]. Journal of Materials Processing Technology,2006,174(1/2/3):82-90.
    [8] JACOBUS J K,DEVOR R E. Machining-induced residual stress:experimentation and modeling[J]. Journal of Manufacturing Science and Engineering,2000,12(2):20-31.
    [9] TSUCHIDA K,KAWADA Y,KODAMA S. A study on the residual stress distributions by turning[J]. Bulletin of the Japan Society of Mechanical Engineers,1975,18(116):123-130.
    [10] ZHAN J Y,LIANG S Y,ZHANG G W. Modeling of residual stress profile in finish hard turning[J]. Materials and Manufacturing Processes,2006,21(1):39-45.
    [11] CARUSO S,OUTEIRO J C,UMBRELLO D,et al. Modeling and experimental validation of the surface residual stresses induced by hard machining of AISI H13 tool steel[J]. International Journal of Material Forming,2010,3(S1):515-518.