不同微物理方案对台风“彩虹”(2015)降水影响的比较研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Comparative Study of Effects of Different Microphysics Schemes on Precipitation Simulation for Typhoon Mujigae(2015)
  • 作者:庞琦烨 ; 平凡 ; 沈新勇 ; 刘靓珂
  • 英文作者:PANG Qiye;PING Fan;SHEN Xinyong;LIU Liangke;Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology;Laboratory of Cloud–Precipitation Physics and Severe Storms (LACS), Institute of Atmospheric Physics, Chinese Academy of Sciences;
  • 关键词:台风降水 ; 云微物理过程 ; 数值模拟 ; “彩虹”台风
  • 英文关键词:Typhoon rainfall;;Cloud microphysical process;;Numerical simulation;;Typhoon Mujigae
  • 中文刊名:DQXK
  • 英文刊名:Chinese Journal of Atmospheric Sciences
  • 机构:南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心;中国科学院大气物理研究所云降水物理与强风暴重点实验室(LACS);
  • 出版日期:2019-01-15
  • 出版单位:大气科学
  • 年:2019
  • 期:v.43
  • 基金:国家重点研究发展计划项目2018YFC1506801;; 国家重点基础研究发展计划项目2015CB453201;; 国家自然科学基金项目41675059;41375066;41530427~~
  • 语种:中文;
  • 页:DQXK201901032
  • 页数:19
  • CN:01
  • ISSN:11-1768/O4
  • 分类号:205-223
摘要
本文以GFS资料为初始场,利用WRF(v3.6.1)模式对2015年第22号台风"彩虹"进行了数值研究。采用CMA(中国气象局)台风最佳路径、MTSAT卫星、自动站降水为观测资料,对比了4个微物理方案(Lin、WSM6、GCE和Morrison)对"彩虹"台风路径、强度、结构、降水的模拟性能。模拟发现上述4个云微物理方案都能较好地模拟出"彩虹"台风西行登陆过程,但是其模拟的台风强度、结构及降水存在较大差异;就水成物而言,除GCE方案对雨水的模拟偏高以外,其他方案对云水、雨水过程的模拟较为接近,其差异主要存在于云冰、雪、霰粒子的模拟上。本文对比分析了WSM6和Morrison两个方案模拟的云微物理过程,发现WSM6方案模拟的雪和霰粒子融化过程显著强于Morrison方案,但是冰相粒子间转化过程的强度明显弱于Morrison方案。云微物理过程的热量收支分析表明:WSM6方案模拟的眼区潜热更强,暖心结构更为显著,台风中心气压更低。细致的云微物理转化分析表明,此次台风降水的主要云微物理过程是水汽凝结成云水和凝华为云冰;生成的云水一方面被雨水收集碰并直接转化为雨水,另一方面先被雪粒子碰并收集转化为霰,然后霰粒子融化成雨水;而生成的云冰则通过碰并增长转化为雪。小部分雪粒子通过碰并收集过冷水滴并淞附增长为霰粒子,随后融化为雨水,大部分雪粒子则直接融化形成地面降水。
        Using GFS(Global Forecast System) data as the initial field, numerical simulations of typhoon Mujigae in 2015 were conducted using the WRF3.6.1(Weather Research and Forecasting Model). A comparative study of four microphysical schemes(Lin, WSM6, GCE, and Morrison) with concerns of the simulated typhoon track, intensity, precipitation, and contents of hydrometeors were carried out using the best track dataset from CMA(China Meteorological Administration), MTSAT satellite data, and precipitation data collected at automatic weather stations. It is found that all the four cloud microphysical schemes can well simulate the westward movement and landfall of the typhoon. However, the simulated typhoon intensity, structure, and precipitation are quite different using the four different cloud microphysics schemes. In terms of the water content, precipitation is overestimated by the GCE scheme, while the other three schemes yield similar simulations of cloud water and rain. This result indicates that the differences among the schemes mainly exist in the simulation of cloud ice, snow, and graupel particles. Comparing the cloud physical transformation processes simulated by the WSM6 and Morrison scheme, it is found that the simulation of melting snow and graupel particles by the WSM6 scheme is better than that by the Morrison scheme, whereas the simulated strength of the conversion process between ice phase particles is weaker than that by the Morrison. The heat budget analysis for cloud microphysical process shows that strong diabatic heating is more concentrated over the eye area in the WSM6 scheme, which results in stronger warm core structure and lower central pressure than in other schemes. Detailed analysis of cloud microphysical conversion shows that the main cloud microphysics process involved in typhoon precipitation is the condensation and/or sublimation of water vapor into cloud water and/or cloud ice. The cloud water is then partly accreted directly into rainwater, and partly accreted by snow particles and form graupels, which finally become rainwater as the graupel particles descend to the melting layer. Through accretion, the cloud ice is converted into snow, while part of the snow particles collect super-cooled water droplets and rim into graupels, which then melt into rain. A considerable part of snow particles directly melt to form precipitation.
引文
程正泉,陈联寿,徐祥德,等.2005.近10年中国台风暴雨研究进展[J].气象,31(12):3-9.Cheng Zhengquan,Chen Lianshou,Xu Xiangde,et al.2005.Research progress on typhoon heavy rainfall in China for last ten years[J].Meteor.Mon.(in Chinese),31(12):3-9,doi:10.3969/j.issn.1000-0526.2005.12.001.
    邓琳,端义宏,高文华,等.2016.超强台风“威马逊”(2014)云微物理特征的模拟与对比分析[J].气象学报,74(5):697-714.Deng Lin,Duan Yihong,Gao Wenhua,et al.2016.Numerical simulation and comparison of cloud microphysical features of super typhoon Rammasun(2014)[J].Acta Meteor.Sinica(in Chinese),74(5):697-714,doi:10.11676/qxxb2016.058.
    Dudhia J.1989.Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J].J.Atmos.Sci.,46(20):3077-3107,doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
    Franklin C N,Holland G J,May P T.2005.Sensitivity of tropical cyclone rainbands to ice-phase microphysics[J].Mon.Wea.Rev.,133(8):2473-2493,doi:10.1175/MWR2989.1.
    傅云飞,刘栋,王雨,等.2007.热带测雨卫星综合探测结果之“云娜”台风降水云与非降水云特征[J].气象学报,65(3):316-328.Fu Yunfei,Liu Dong,Wang Yu,et al.2007.Characteristics of precipitating and non-precipitating clouds in typhoon Ranan as viewed by TRMMcombined measurements[J].Acta Meteor.Sinica(in Chinese),65(3):316-328,doi:10.11676/qxxb2007.031.
    郭浩鑫,杨杰颜,张新新,等.2016.1522号强台风“彩虹”特征分析[J].广东气象,38(5):6-9.Guo Haoxin,Yang Jieyan,Zhang Xinxin,et al.2016.Analysis of the characteristics of severe typhoon Mujigae(1522)[J].Guangdong Meteor.(in Chinese),38(5):6-9.
    Hjelmfelt M R,Roberts R D,Orville H D,et al.1989.Observational and numerical study of a microburst line-producing storm[J].J.Atmos.Sci.,46(17):2731-2744,doi:10.1175/1520-0469(1989)046<2731:OANSOA>2.0.CO;2.
    Hong S Y,Juang H M H,Zhao Q Y.1998.Implementation of prognostic cloud scheme for a regional spectral model[J].Mon.Wea.Rev.,126(10):2621-2639,doi:10.1175/1520-0493(1998)126<2621:IOPCSF>2.0.CO;2.
    Hong S Y,Sunny Lim K S,Kim J H,et al.2009.Sensitivity study of cloud-resolving convective simulations with WRF using two bulk microphysical parameterizations:Ice-phase microphysics versus sedimentation effects[J].J.Appl.Meteor.Climatol.,48(1):61-76,doi:10.1175/2008JAMC1960.1.
    花丛,刘奇俊.2013.云微物理过程影响登陆台风结构及降水的数值试验[J].热带气象学报,29(6):924-934.Hua Cong,Liu Junqi.2013.Sensitivity of landfalling typhoon structure and precipitation to varying cloud microphysical processes[J].J.Trop.Meteor.(in Chinese),29(6):924-934.
    黄巾旗,王盛繁,梁毅进,等.2017.2015年秋季台风“彩虹”暴雨诊断分析[J].中国农学通报,33(14):87-94.Huang Jinqi,Wang Shengfan,Liang Yijin,et al.2017.Diagnostic analysis of rainstorm associated with typhoon“Rainbow”in the autumn of 2015[J].Chin.Agric.Sci.Bull.(in Chinese),33(14):87-94.
    李彩玲,炎利军,李兆慧,等.2016.1522号台风“彩虹”外围佛山强龙卷特征分析[J].热带气象学报,32(3):416-424.Li Cailing,Yan Lijun,Li Zhaohui,et al.2016.Analysis of a tornado in outside-region of typhoon Mujigae in 2015[J].J.Trop.Meteor.(in Chinese),32(3):416-424,doi:10.16032/j.issn.1004-4965.2016.03.013.
    李响.2012.WRF模式中积云对流参数化方案对西北太平洋台风路径与强度模拟的影响[J].中国科学:地球科学,42(12):1966-1978.Li Xiang.2013.Sensitivity of WRF simulated typhoon track and intensity over the Northwest Pacific Ocean to cumulus schemes[J].Science China Earth Sciences,56(2):270-281,doi:10.1007/s11430-012-4486-0.
    Lin Y L,Farley R D,Orville H D.1983.Bulk parameterization of the snow field in a cloud model[J].J.Climate Appl.Meteor.,22(6):1065-1092,doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.
    Morrison H,Pinto J O.2005.Mesoscale modeling of springtime arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme[J].J.Atmos.Sci.,62(10):3683-3704,doi:10.1175/JAS3564.1.
    Rutledge S A,Hobbs P V.1984.The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones.XII:Adiagnostic modeling study of precipitation development in narrow cold-frontal rainbands[J].J.Atmos.Sci.,41(20):2949-2972,doi:10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.
    沈新勇,梅海霞,王卫国,等.2015.双参数微物理方案的冰相过程模拟及冰核数浓度的影响试验[J].大气科学,39(1):83-99.Shen Xinyong,Mei Haixia,Wang Weiguo,et al.2015.Numerical simulation of ice-phase processes using a double-moment microphysical scheme and a sensitivity test of ice nuclei concentration[J].Chinese Journal of Atmospheric Sciences(in Chinese),39(1):83-99,doi:10.3878/j.issn.1006-9895.1405.13310.
    Tao W K,Simpson J,Mc Cumber M.1989.An ice-water saturation adjustment[J].Mon.Wea.Rev.,117(1):231-235,doi:10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2.
    Tao W K,Shi J J,Chen S S,et al.2011.The impact of microphysical schemes on hurricane intensity and track[J].Asia-Pacific J.Atmos.Sci.,47(1):1-16,doi:10.1007/s13143-011-1001-z.
    Tao W K,Lang S,Zeng X P,et al.2014.The Goddard Cumulus Ensemble model(GCE):Improvements and applications for studying precipitation processes[J].Atmos.Res.,143:392-424,doi:10.1016/j.atmosres.2014.03.005.
    王咏梅,任福民,李维京,等.2008.中国台风降水的气候特征[J].热带气象学报,24(3):233-238.Wang Yongmei,Ren Fumin,Li Weijing,et al.2008.Climatic characteristics of typhoon precipitation over China[J].J.Trop.Meteor.(in Chinese),24(3):233-238,doi:10.3969/j.issn.1004-4965.2008.03.004.
    王在志,闫敬华.2007.水成物分析及在数值模式中的应用综述[J].热带气象学报,23(1):85-89.Wang Zaizhi,Yan Jinghua.2007.A review of the analysis of moisture variables and the application in numerical models[J].J.Trop.Meteor.(in Chinese),23(1):85-89,doi:10.3969/j.issn.1004-4965.2007.01.014.
    许广,费建芳,黄小刚,等.2017.一次飑线过程的云微物理参数化方案数值试验及其成因分析[J].气象科学,37(3):283-292.Xu Guang,Fei Jianfang,Huang Xiaogang,et al.2017.Simulation experiments of cloud microphysical parameterization schemes on a squall line and its genesis analysis[J].J.Meteor.Sci.,37(3):283-292,doi:10.3969/2016jms.0027.
    Yang M J,Ching L.2005.A modeling study of typhoon Toraji(2001):Physical parameterization sensitivity and topographic effect[J].Terrestrial,Atmospheric and Oceanic Sciences,16(1):177-213,doi:10.3319/TAO.2005.16.1.177(A).
    杨文霞,冉令坤,洪延超.2010.台风Wipha云微物理特征数值模拟[J].科技导报,28(23):34-39.Yang Wenxia,Ran Lingkun,Hong Yanchao.2010.Numerical study of the characters of typhoon Wipha cloud microphysical processes[J].Sci.Technol.Rev.(in Chinese),28(23):34-39.
    Yin L,Ping F,Mao J H.2017.A comparative study between bulk and bin microphysical schemes of a simulated squall line in East China[J].Atmos.Sci.Lett.,18(5):195-206,doi:10.1002/asl.742.