全光纤位移干涉技术在SHPB实验测量中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of an All-Fiber Displacement Interferometer on SHPB Experiment Measurements
  • 作者:翁继东 ; 李英雷 ; 陈宏 ; 叶想平 ; 叶素华 ; 谭华 ; 刘仓理
  • 英文作者:WENG Jidong;LI Yinglei;CHEN Hong;YE Xiangping;YE Suhua;TAN Hua;LIU Cangli;Key Laboratory of Shock Waves and Detonation Physics,Institute of Fluid Physics,CAEP;
  • 关键词:DISAR ; 分离式霍普金森杆 ; 掺饵光纤放大器 ; 半导体光放大器 ; 应变
  • 英文关键词:displacement interferometer system for any reflector(DISAR);;split Hopkinson pressure bar(SHPB);;erbium doped fiber amplifier(EDFA);;semiconductor optical amplifier(SOA);;strain
  • 中文刊名:GYWL
  • 英文刊名:Chinese Journal of High Pressure Physics
  • 机构:中国工程物理研究院流体物理研究所冲击波物理与爆轰物理重点实验室;
  • 出版日期:2017-12-29 10:55
  • 出版单位:高压物理学报
  • 年:2018
  • 期:v.32;No.141
  • 基金:中国工程物理研究院流体物理研究所冲击波物理与爆轰物理实验室基金(9140C671001140C67286)
  • 语种:中文;
  • 页:GYWL201801010
  • 页数:6
  • CN:01
  • ISSN:51-1147/O4
  • 分类号:94-99
摘要
为直接测量霍普金森压杆加载下试样径向应变位移,提出了一种稳幅输出的新型全光纤位移干涉技术。该技术采用半导体光放大器与掺饵光纤放大器的组合对来自试样表面的反射光进行动态饱和式放大。理论研究表明,该新型全光纤位移干涉仪能够输出振幅稳定的干涉信号,消除试样表面反射光强变化对位移测量精度的影响。实验结果表明,新型全光纤位移干涉仪能够实现对霍普金森压杆加载下试样弹性应变和塑性应变的高精度非接触测量。
        In the present study,to directly measure the radial strain of a metal sample loaded by the split Hopkinson pressure bar(SHPB) facility,we developed a new all-fiber displacement interferometer that could output signals of invariable strength by adopting a semiconductor optical amplifier(SOA) followed by an erbium doped fiber amplifier(EDFA) to control the light intensity reflected from the measured sample during the dynamic measurement process. The theoretical study showed that the displacement measurement resolution was free from the fluctuation of the output intensity,and the experimental results demonstrated that this new interferometer could measure the elastic and plastic strains of metal sample loaded by the SHPB with high resolution.
引文
[1]KOLSKY H.An investigation of the mechanical properties of materials at very high rates of loading[J].Proceedings of the Physical Society of London Section B,1949,62(11):676-700.
    [2]LI Y,RAMESH K T.An optical technique for measurement of material properties in the tension Kolsky bar[J].International Journal of Impact Engineering,2007,34(4):784-798.
    [3]SUTTON M A,ORTEU J J,SCHREIER H.Image correlation for shape,motion and deformation measurements:basic concepts,theory and applications[M].New York:Springer Publishing,2009.
    [4]AVINADAV C,ASHUACH Y,KREIF R.Interferometry-based Kolsky bar apparatus[J].Review of Scientific Instruments,2011,82(7):223.
    [5]SONG H W,WU X Q,HUANG C G,et al.Measurement of fast-changing low velocities by photonic Doppler velocimetry[J].Review of Scientific Instruments,2012,83(7):073301.
    [6]WENG J D,TAN H,WANG X,et al.Optical-fiber interferometer for velocity measurements with picosecond resolution[J].Applied Physics Letters,2006,89(11):4669.
    [7]STRAND O T,GOOSMAN D R,MARTINEZ C,et al.Compact system for high-speed velocimetry using heterodyne techniques[J].Review of Scientific Instruments,2006,77(8):083108.
    [8]DOLAN D H,JONES S C.Push-pull analysis of photonic Doppler velocimetry measurements[J].Review of Scientific Instruments,2007,78(7):076102.
    [9]WENG J D,WANG X,TAO T J,et al.Optic-microwave mixing velocimeter for superhigh velocity measurement[J].Review of Scientific Instruments,2011,82(12):123114.
    [10]AO T,DOLAN D H.Effect of window reflections on photonic Doppler velocimetry measurements[J].Review of Scientific Instruments,2011,82(2):023907.
    [11]GINOVART F,SIMON J C,VALIENTE I.Gain recovery dynamics in semiconductor optical amplifier[J].Optics Communications,2001,199(1):111-115.