西藏鸡公村钼矿区中酸性岩体的时代、岩石地球化学特征及构造背景
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Geochronology, rock geochemistry and tectonic setting of intermediate-acid intrusive rocks from the Jigongcun molybdenum mining area, Tibet
  • 作者:王健 ; 魏启荣 ; 次琼 ; 郑秋平 ; 王旭东 ; 吉雪峰 ; 许欢
  • 英文作者:WANG Jian;WEI Qirong;CI Qiong;ZHENG Qiuping;WANG Xudong;JI Xuefeng;XU Huan;Faculty of Earth Resources,China University of Geosciences(Wuhan);Second Geological Survey,Tibet Institute of Geological Survey;
  • 关键词:中酸性侵入岩 ; 锆石U-Pb年龄 ; 岩石地球化学 ; 构造背景 ; 鸡公村钼矿 ; 西藏
  • 英文关键词:intermediate-acid intrusive rocks;;zircon U-Pb dating;;rock geochemistry;;tectonic setting;;Jigongcun molybdenum mining area;;Tibet
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:中国地质大学(武汉)资源学院;西藏自治区地质调查院二分院;
  • 出版日期:2018-12-07 15:29
  • 出版单位:地学前缘
  • 年:2018
  • 期:v.25;No.134
  • 基金:中国地质调查局项目“冈底斯—喜马拉雅铜矿资源基地调查”(DD20160015)
  • 语种:中文;
  • 页:DXQY201806014
  • 页数:13
  • CN:06
  • ISSN:11-3370/P
  • 分类号:158-170
摘要
鸡公村钼矿位于冈底斯-下察隅晚燕山—喜山期岩浆弧带南缘。文中以矿区广泛分布的中酸性岩体为研究对象,从野外地质调查、岩石学、LA-ICP-MS锆石U-Pb定年、岩石地球化学成分特征等方面对其进行了系统的探讨。研究结果显示:鸡公村中酸性岩体的岩石类型主要为石英闪长岩和少量的花岗闪长岩;中酸性岩体的LA-ICP-MS锆石U-Pb年龄为(51.8±0.5)Ma,表明其形成于始新世(E2)时期;中酸性岩具低K(w(K_2O)为1.66%~2.44%)、高Na(w(Na_2O)为3.58%~4.06%)的特点,属钙碱性-高钾钙碱性系列,具准铝质-弱过铝质的特征;稀土总量(ΣREE)变化范围较大((53.6~117)×10~(-6)),稀土元素配分模式表现为轻稀土富集的右倾斜型,其(La/Yb)_N值为3.90~7.31,铈、铕异常不明显(Ce/Ce~*=0.92~1.17,Eu/Eu~*=0.96~1.15);微量元素比值蛛网图上显示出Rb、Th、U、K等元素的正异常和Ba、Nb、Ta、P、Ti等元素的负异常;鸡公村中酸性岩属I型花岗岩,是变玄武岩质下地壳部分熔融的产物;鸡公村中酸性岩体形成于印度-欧亚板块俯冲碰撞环境,起源于地壳加厚导致的源区物质的部分熔融。
        The Jigongcun molybdenum mine is located in the southern part of the Gangdise-Xiachayu late Yanshan-Himalaya magmatic arc zone.In this paper,we studied the intermediate-acid rocks widely distributed in the mining area and carried out a systematic investigation on field geological survey,petrology,LA-ICPMS zircon U-Pb dating and geochemical characteristics of these rocks.The findings indicate that the Jigongcun intermediate-acid rocks are mainly quartz diorite and some granodiorite.The rocks' LA-ICP-MS zircon U-Pb age of 51.8±0.5 Ma suggests they were formed in the Eocene (E_2) period.They have low K (K_2O content ranges 1.66%-2.44%) and high Na (Na_2O content ranges 3.58%-4.06%) contents and belong to calc-alkaline-high potassium calc-alkaline series with quasi-aluminum-weak aluminous characteristics.The ΣREE contents vary greatly (53.6-117)×10~(-6) with light REE enrichment,represented by right-inclined REE distribution mode,and (La/Yb)_N value of 3.90-7.31.No obvious Ce and Eu anomalies were observed(Ce/Ce~*=0.92-1.17;Eu/Eu~*=0.96-1.15),while the trace-element spider diagram shows positive Rb,Th,U and K and negative Ba,Nb,Ta,P and Ti anomalies.The Jigongcun intermediate-acid rocks belong to Itype granite,and formed from the partial melting of the lower basaltic crust due to thickening of the crust,in the subduction and collision environment of the Indo-Eurasian plate.
引文
[1]YIN A,HARRISON T M.Geologic evolution of the Himalayan-Tibetan Orogen[J].Annual Review of Earth and Planetary Sciences,2000,28(28):211-280.
    [2]赵志丹,莫宣学,罗照华,等.印度-亚洲俯冲带结构:岩浆作用证据[J].地学前缘,2003,10(3):149-157.
    [3]莫宣学,赵志丹,邓晋福,等.印度-亚洲大陆主碰撞过程的火山作用响应[J].地学前缘,2003,10(3):135-148.
    [4]莫宣学,董国臣,赵志丹,等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J].高校地质学报,2005,11(3):281-290.
    [5]莫宣学,潘桂棠.从特提斯到青藏高原形成:构造-岩浆事件的约束[J].地学前缘,2006,13(6):43-51.
    [6]莫宣学,赵志丹,DEPAOLO D J,等.青藏高原拉萨地块碰撞-后碰撞岩浆作用的3种类型及其对大陆俯冲和成矿作用的启示:Sr-Nd同位素证据[J].岩石学报,2006,13(4):795-803.
    [7]莫宣学,赵志丹,喻学惠,等.青藏高原新生代碰撞-后碰撞火成岩[M].北京:地质出版社,2009.
    [8]侯增谦,杨竹森,徐文艺,等.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用[J].矿床地质,2006,25(4):337-358.
    [9]潘桂棠,莫宣学,侯增谦,等.冈底斯造山带的时空结构及演化[J].岩石学报,2006,22(3):521-533.
    [10]朱弟成,潘桂棠,王立全,等.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论[J].地质通报,2008,27(9):1535-1550.
    [11]朱弟成,莫宣学,赵志丹,等.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点[J].地学前缘,2009,16(2):1-20.
    [12]ZHU D C,ZHAO Z D,NIU Y L,et al.The Lhasa Terrane:record of a microcontinent and its histories of drift and growth[J].Earth and Planetary Science Letters,2011,301(1/2):241-255.
    [13]迟效国,刘建峰,赵芝,等.青藏高原新生代两类超钾质岩石的成因:实验岩石学和地球化学约束[J].地学前缘,2009,16(1):88-98.
    [14]刘敏,朱弟成,赵志丹,等.西藏冈底斯东部然乌地区早白垩世岩浆混合作用:锆石SH RIMP U-Pb年龄和Hf同位素证据[J].地学前缘,2009,16(2):152-160.
    [15]王程,魏启荣,刘小念,等.冈底斯印支晚期后碰撞花岗岩:锆石U-Pb年代学及岩石地球化学证据[J].地球科学:中国地质大学学报,2014,39(9):1277-1288.
    [16]侯增谦,曲晓明,王淑贤,等.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用[J].中国科学:D辑,2003,33(7):609-618.
    [17]芮宗瑶,侯增谦,曲晓明,等.冈底斯斑岩铜矿成矿时代及青藏高原隆升[J].矿床地质,2003,22(3):217-225.
    [18]唐菊兴,陈毓川,王登红,等.西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义[J].地质学报,2009,83(5):698-704.
    [19]唐菊兴,多吉,刘鸿飞,等.冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究[J].地球学报,2012,33(4):393-410.
    [20]李光明,段志明,黄勇,等.西藏冈底斯-喜马拉雅地质与成矿[M].武汉:中国地质大学出版社,2017.
    [21]HOU Z Q,ZHENG Y C,YANG Z M,et al.Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet[J].Mineralium Deposita,2013,48(2):173-192.
    [22]龙洋,安邦涛.西藏曲水县鸡公村钼矿区地质特征及成因浅析[J].地质与测绘,2017,24(3):66-67.
    [23]张苏坤,郑有业,张刚阳,等.西藏曲水县鸡公村石英脉型钼矿床成矿时代约束[J].矿床地质,2013,32(3):641-648.
    [24]LIU Y S,HU Z C,GAO S,et al.In-situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MSwithout applying an internal standard[J].Chemical Geology,2008,257(1):34-43.
    [25]ANDERSEN T.Correction of common lead in U-Pb analyses that do not report 204Pb[J].Chemical Geology,2002,192(1):59-79.
    [26]吴元保,郑永飞.锆石成因矿物学及其对U-Pb年龄解释的制约[J].科学通报,2004,49(15):1554-1569.
    [27]COX K G,BELL J D,PANKHURST R J.The interpretation of igneous rocks[M].London:Allen and Unwin,1979.
    [28]IRVINE T N,BARAGAR W R A.A guide to the chemical classification of the common volcanic rocks,Canadian[M].Journal of Earth Sciences,1971,8(5):523-548.
    [29]PECCERILLO A,TAYLOR S R.Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu Area,Northern Turkey[J].Contributions to Mineralogy and Petrology,1976,58(1):63-81.
    [30]MIDDLEMOST E A K.Magmas and magmatic rocks:an introduction to igneous petrology[M].London:Longman,1985.
    [31]董国臣,莫宣学,赵志丹,等.冈底斯岩浆带中段岩浆混合作用:来自花岗杂岩的证据[J].岩石学报,2006,22(4):77-86.
    [32]MANIAR P D,PICCOLI P M.Tectonic discrimination of granitoids[J].Geological Society of America Bulletin,1989,101(5):635-643.
    [33]SUN S S,MCDONOUGH W F.Chemical and isotopic systematics of oceanic Basalts:implications for mantle composition and processes[J].Geological Society,London,Special Publication,1989,42(1):313-345.
    [34]CHAPPELL B W.Two contrasting granite type[J].Pacific Geology,1974,8:173-174.
    [35]COLLINS W J,BEAMS S D,WHITE A J R,et al.Nature and origin of A-type granites with particular reference to southeastern Australia[J].Contribution to Mineralogy and Petrology,1982,80(2):189-200.
    [36]桑隆康,马昌前.岩石学[M].北京:地质出版社,2012.
    [37]TREUIL M,JORON J M.Utilisation des elements hygromagmatophiles pour La simplifications de la modelisation quantitative des precessus magmatiques[J].Society of Italian Mineralogy and Petrology,1975,31:74-125.
    [38]陈德潜,陈刚.实用稀土元素地球化学[M].北京:冶金工业出版社,1990.
    [39]黎彤.中国陆壳及其沉积层和上陆壳的化学元素丰度[J].地球化学,1995,14(1):26-32.
    [40]NIU Y.ChemInform abstract:Earth processes cause Zr-Hf and Nb-Ta fractionations,but why and how?[J].Cheminform,2012,43(29):3587-3591.
    [41]纪伟强,吴福元,锺孙霖,等.西藏南部冈底斯岩基花岗岩时代与岩石成因[J].中国科学:地球科学,2009,39(7):849-871.
    [42]ALTHERR R,HOLL A,HEGNER E,et al.High-potassium,calc-alkaline I-type plutonism in the European variscides:northern Vosges(France)and northern Schwarzwald(Germany)[J].Lithos,2000,50(1):51-73.
    [43]CHUNG S L,CHU M F,ZHANG Y,et al.Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J].Earth-Science Reviews,2005,68(3):173-196.
    [44]MO X X,HOU Z Q,NIU Y L,et al.Mantle contributions to crustal thickening during continental collision:evidence from Cenozoic igneous rocks in southern Tibet[J].Lithos,2007,96(1):225-242.
    [45]JI W Q,WU F Y,CHUNG S L,et al.Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith,southern Tibet[J].Chemical Geology,2009,262(3/4):229-245.
    [46]ZHU D C,WANG Q,ZHAO Z D,et al.Magmatic record of India-Asia collision[J].Scientific Reports,2015,5:17236.
    [47]HOU Z Q,DUAN L F,LU Y J,et al.Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan Orogen[J].Economic Geology,2015,110:1541-1575.
    [48]许志琴,王勤,李忠海,等.印度-亚洲碰撞:从挤压到走滑的构造转换[J].地质学报,2016,90(1):1-23.
    [49]MENG Y K,XU Z Q,SANTOSH M,et al.Late Triassic crustal growth in southern Tibet:evidence from the Gangdese magmatic belt[J].Gondwana Research,2016,37:449-464.
    [50]MA S W,MENG Y K,XU Z Q,et al.The discovery of late Triassic mylonitic granite and geologic significance in the middle Gangdese batholiths,southern Tibet[J].Journal of Geodynamics,2016,104:49-64.
    [51]WEN D R,LIU D,CHUNG S L,et al.Zircon SHRIMPU-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet[J].Chemical Geology,2008,252(3/4):191-201.
    [52]董国臣,莫宣学,赵志丹,等.冈底斯带西段那木如岩体始新世岩浆作用及构造意义[J].岩石学报,2011,27(7):1983-1992.
    [53]孟元库,许志琴,陈希节,等.藏南冈底斯中段谢通门始新世复式岩体锆石U-Pb年代学、Hf同位素特征及其地质意义[J].大地构造与成矿学,2015,39(5):933-948.
    [54]管琪,朱弟成,赵志丹,等.西藏南部冈底斯带东段晚白垩世埃达克岩:新特提斯洋脊俯冲的产物?[J].岩石学报,2010,26(7):2165-2179.
    [55]PEARCE J A,HAMIS J A,TINDLE A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology,1984,25(4):956-983.
    [56]BATCHELOR R A,BOWDEN P.Petrogenetic interpretation of granitoid rock series using multicationic parameters[J].Chemical Geology,1985,48(1):43-55.
    [57]HU X M,GARZANTI E,MOORE T,et al.Direct stratigraphic dating of India-Asia collision onset at the Selandian(middle Paleocene,59±1Ma)[J].Geology,2015,43(10):859-862.