基于拓扑优化的扭力梁式轿车后桥结构轻量化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Lightweight Design of the Rear Axle for a Sedan Based on Topology Optimization
  • 作者:汪彬 ; 陈光权 ; 施卓奇 ; 董卫平 ; Gaurav ; Kesireddy ; 张洪延
  • 英文作者:WANG Bin;CHEN Guangquan;SHI Zhuoqi;DONG Weiping;Gaurav Kesireddy;ZHANG Hongyan;Zhejiang Normal University;Department of MIME,University of Toledo;
  • 关键词:后桥 ; 轻量化 ; 结构优化 ; 拓扑优化
  • 英文关键词:rear axle;;lightweight;;structural optimization;;topology optimization
  • 中文刊名:QCYK
  • 英文刊名:Chinese Journal of Automotive Engineering
  • 机构:浙江师范大学;托莱多大学;
  • 出版日期:2019-03-20
  • 出版单位:汽车工程学报
  • 年:2019
  • 期:v.9;No.49
  • 基金:国家自然科学基金(51501165);; 浙江省基础公益研究计划(LGG18E050010)
  • 语种:中文;
  • 页:QCYK201902010
  • 页数:6
  • CN:02
  • ISSN:50-1206/U
  • 分类号:69-74
摘要
在某轿车原扭力梁后桥的基础上,建立了扭力梁式后桥的结构力学模型,具体分析了原车后桥的模态及在静止、制动或启动及侧翻工况下的强度。在此基础上进行原车后桥的拓扑结构轻量化设计,通过在原后桥的基础上获得后桥空间设计域及非设计域,定义设计目标、设计函数、加载条件及响应,迭代计算获得了最佳的结构拓扑方案。根据结构拓扑优化的最终结果,通过CAD重构获得了拓扑结构轻量化的后桥设计。模态及强度计算结果显示,优化后的后桥前三阶模态频率较原后桥有大幅减小,不同工况下后桥的应力分布更趋合理,在设计域内及安装位置不变的条件下,新后桥的质量由原后桥的19.06 kg减少到17.67 kg,减重7.29%。
        The mechanical models of a rear axle were built based on the torsional analysis of a beam and the existing design of a rear suspension of a sedan. These models were then used to optimize the structure through topological optimization. On the basis of the original design,the various loadings,such as static loading,braking force,acceleration force and centrifugal force were then determined,and a modal analysis was conducted to provide a reference for the optimized design. A topological optimization was then conducted using a design space derived from the original structure,and the constraint conditions,the objective function,the loadings and responses were defined according to the product requirements. The modal analysis and strength analysis show that the optimized design yields significantly lower values of the first three natural frequencies,and a more uniform stress distribution. In addition,after the optimization the mass of the rear axle was reduced from 19.06 kg to 17.67 kg,by 7.29%,within the design domain and without changing the assembly of the rear axle.
引文
[1] ZHOU M, PAGALDIPTI N, THOMAS H L, et al. An Integrated Approach to Topology, Sizing and Shape Optimization[J]. Structure and Multidisciplinary Optimization, 2004, 26(10):308-317.
    [2] TORSTENFELT B, KLARBRING A. Conceptual Optimal Design of Modular Car Product Families UsingSimultaneous Size, Shape and Topology Optimization[J].Finite Elements in Analysis and Design, 2007, 43(14):1050-1061.
    [3]张世荣.汽车概论[M].北京:清华大学出版社,2010.ZHANG Shirong. Introduction to Automobile[M].Beijing:Tsinghua University Press, 2010.(in Chinese)
    [4] JUNG D Y, GEA H C. Topology Optimization of Nonlinear Structures[J]. Finite Elements in Analysis and Design,2004,40(11):1417-1427.
    [5]陈家瑞.汽车构造下册[M].北京:机械工业出版社,2005.CHEN Jiarui. The Second Volume of Automobile Structure[M]. Beijing:China Machine Press, 2005.(in Chinese)
    [6]鲁春艳.汽车轻量化技术的发展现状及其实施途径[J].上海汽车,2007(6):28-31.LU Chunyan.The Current Situation and Implementation Method of the Lightweight Technology of the Vehicle[J].Shanghai Auto,2007(6):28-31.(in Chinese)
    [7] KODIVALAM S,YANG R J. Multi-Diplomacy Design Optimization of a Vehicle System in a Scalable High Performance Computing Environment[J]. Structural and Multidisciplinary Optimization,2003,26(3):256-263.
    [8]王新宇.重型商用车驾驶室轻量化分析与优化[D].长春:吉林大学,2012.WANG Xinyu. Lightweight Analysis and Optimization of Heavy Commercial Vehicle Cab[D]. Changchun:Jilin University,2012.(in Chinese)
    [9]王广勇,王刚.高强度钢在汽车轻量化中的应用[J].汽车工艺与材料,2011(1):1-5.WANG Guangyong, WANG Gang. The Application of High Strength Steel in Automobile Lightweight[J]. Automobile Technology and Material, 2011(1):1-5.(in Chinese)
    [10]耿培林,白骏,杨保华.汽车轻量化的发展及前景探究[J].科协论坛(下半月),2012(3):64-65.GENG Peilin, BAI Jun, YANG Baohua. Development and Prospect of Automobile Lightweight[J]. Science&Technology Association Forum(The Second Half of the Month),2012(3):64-65.(in Chinese)
    [11] CALVEL S, MONGEAU M. Black-Box Structural Optimization of a Mechanical Component[J]. Computers&Industrial Engineering,2007,53(3):514-530.
    [12]范军锋,冯奇,凌天钧,等.汽车轻量化与制造工艺[J].机械设计与制造,2009(7):141-143.FAN Junfeng, FENG Qi, LING Tianjun, et al. Automobile Lightweight and Manufacture Technology[J].Machinery Design&Manufacture, 2009(7):141-143.(in Chinese)
    [13]白永成.内高压成形原理及设备综述[J].科技创新与应用,2012(11):78-79.BAI Yongcheng.Overview of the Principle and Equipment of Internal High Pressure Forming[J].Innovation and Application of Science and Technology, 2012(11):78-79.(in Chinese)
    [14]刘强,张晓胜,谢文才,等.奔腾B50副车架内高压成形有限元分析[J].汽车工艺与材料,2010(2):58-60.LIU Qiang, ZHANG Xiaosheng, XIE Wencai, et al.Finite Element Analysis on High Pressure Forming of Besturn B50 Subframe[J]. Automobile Technology and Material,2010(2):58-60.(in Chinese)
    [15]鞠晓锋,陈昌明,吴宪.现代汽车轻量化技术[J].上海汽车,2006(9):31-33.JU Xiaofeng,CHEN Changming,WU Xian. Light Weight Technology of Modern Vehicle[J]. Shanghai Auto,2006(9):31-33.(in Chinese)
    [16] DURALI M, BEHRAVESH B.Optimization of Torsion Beam Cross Section Using a Combined FEM-Dynamic Simulation[C]//SAE Technical Papers,2003-01-2882,2003.
    [17] KLAUS STORZEL K, THOMAS BRUDER T. Reliable Pre-Design of Commercial Vehicle Rotating Suspension Components[C]//SAE Technical Papers, 2003-01-3426, 2003.