解淀粉芽胞杆菌PHODB35对小麦的促生作用及产量影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Growth-promotion Effect of Bacillus amyloliquefaciens PHODB35 on Wheat Plant and Yield
  • 作者:赵卫松 ; 李社增 ; 鹿秀云 ; 张晓云 ; 王培培 ; 郭庆港 ; 齐永志 ; 董丽红 ; 毛晓曦 ; 苏振贺 ; 马平
  • 英文作者:ZHAO Weisong;LI Shezeng;LU Xiuyun;ZHANG Xiaoyun;WANG Peipei;GUO Ginggang;QI Yongzhi;DONG Lihong;MAO Xiaoxi;SU Zhenhe;MA Ping;Integrated Pest Management Center of Hebei Province/Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences;College of Plant Protection, Agricultural University of Hebei;
  • 关键词:解淀粉芽胞杆菌 ; 促生作用 ; 小麦 ; 化学肥料减施 ; 有机肥
  • 英文关键词:Bacillus amyloliquefaciens;;growth-promoting effects;;wheat;;chemical fertilizer reduction;;organic fertilizer
  • 中文刊名:ZSWF
  • 英文刊名:Chinese Journal of Biological Control
  • 机构:河北省农林科学院植物保护研究所/河北省农业有害生物综合防治工程技术研究中心;河北农业大学植物保护学院;
  • 出版日期:2019-05-10 13:32
  • 出版单位:中国生物防治学报
  • 年:2019
  • 期:v.35
  • 基金:河北省自然科学基金(C2017301069,C2016204211);; 河北省博士科研财政专项(494-0701-YBN-K9UA);; 国家重点研发计划(2017YFD0201100);; 河北省财政专项(F17C10007)
  • 语种:中文;
  • 页:ZSWF201903012
  • 页数:8
  • CN:03
  • ISSN:11-5973/S
  • 分类号:95-102
摘要
解淀粉芽胞杆菌Bacillus amyloliquefaciens PHODB35是一株具有抑菌和促生作用的多功能菌株。为了明确其对小麦的促生作用,通过离体平皿法研究菌株PHODB35发酵液对小麦种子萌发和幼苗生长的影响。结果表明,菌株PHODB35发酵液对种子萌发和芽长生长存在不同程度影响,其中高浓度发酵液(10×10~8和2×10~(8 )CFU/mL)对上述指标具有抑制作用,低浓度发酵液(1×10~8、1×10~7、2×10~6和1×10~6 CFU/mL)对种子萌发不存在显著影响,但促进芽长的生长,其增长幅度为13.48%~20.22%,初步明确了菌株PHODB35适宜的接种浓度为1×10~(8 )CFU/m L。温室盆栽试验表明,在该接种浓度处理后小麦的株高、鲜重、干重和基质有效磷含量均有不同程度的增加。同时以该菌株为活性成分研制的有机肥料(浓度为1×10~8 CFU/g)的盆栽试验结果表明,随着PHODB35有机肥用量的增加,分别提高了基质有效磷和小麦植株全磷含量3.86和3.55倍,其促生作用优于普通有机肥。多地区的田间试验表明,PHODB35有机肥处理(T3)在产量方面高于化学肥料减施处理(T2),增产率5.31%~9.06%。该研究结果为解淀粉芽胞杆菌PHODB35有机肥的进一步产业化开发和应用提供了科学依据。
        Bacillus amyloliquefaciens PHODB35 is a multifunctional bacterial strain which has significant control efficiency on diseases and growth-promotion effect on plants.In order to clarify the growth promoting effect of strain PHODB35 on wheat,seed germination and seedling growth treated with fermentation broth of strain PHODB35 were investigated by petri dish method in vitro.The results showed that the fermentation broth of strain PHODB35 had different effects on seed germination and bud length,and the high concentration of fermentation broth at 10×10~(8 )and 2×10~8CFU/mL had inhibitory effects,,respectively.Moreover,there was no significant difference on germination rate at the low concentration of 1×10~8,1×10~7,2×10~(6 )and 1×10~(6 )CFU/mL,but promoted the growth of bud growth,by 13.48%to 20.22%,respectively.It was preliminarily cleared that the suitable inoculum concentration of strain PHODB35 was 1×10~(8 )CFU/mL.Pot experiment in greenhouse showed that the plant height,fresh weight,dry weight of wheat and available phosphorus content in substrate was increased to some extent under the suitable inoculum concentration of strain PHODB35.At the same time,the organic fertilizer(concentration of 1×10~8 CFU/g)was developed with the active component of strain PHODB35.Pot experiments showed that the content of available phosphorus in substrate and total phosphorus in wheat were increased by 3.86 times and 3.55 times,respectively,with the increase of application of PHODB35 organic fertilizer.It was concluded that the growth-promoting effect of PHODB35 was better than that of common organic fertilizer.Field experiments in many areas showed that the yield of PHODB35 organic fertilizer(T3)was higher than that of chemical fertilizer treatment(T2),with the increase rate of 5.31%to 9.06%.The results provided a scientific basis for further industrial development and application of Bacillus amyloliquefaciens PHODB35organic fertilizer.
引文
[1]许仁杰,伍树明,伍洲,等.一株解淀粉芽孢杆菌及其应用[P].CN:201210364081.4,2013.
    [2]Pastor N,Rosas S,Luna V,et al.Inoculation with Pseudomonas putida PCI2,a phosphate solubilizing rhizobacterium,stimulates the growth of tomato plants[J].Symbiosis,2014,62:157-167.
    [3]Schroder J J,Smit A L,Cordell D,et al.Improved phosphorus use efficiency in agriculture:a key requirement for its sustainable use[J].Chemosphere,2011,84(6):822-831.
    [4]Richardson A E,Barea J M,McNeill A M,et al.Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms[J].Plant Soil,2009,321:305-333.
    [5]Saravanakumar K,Arasu V S,Kathiresan K.Effect of Trichoderma on soil phosphate solubilization and growth improvement of Avicennia marina[J].Aquatic Botany,2013,104:101-105.
    [6]Zhao K,Penttinen P,Zhang X P,et al.Maize rhizosphere in Sichuan,China,hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities[J].Microbiological Research,2014,169:76-82.
    [7]Liu Z G,Li Y C,Zhang S A,et al.Characterization of phosphate-solubilizing bacteria isolated from calcareous soils[J].Applied Soil Ecology,2015,96:217-224.
    [8]崔荣强,张久明,马湘君,等.海洋生境芽孢杆菌(Bacillus sp.)T28菌株对番茄生长的多功能促进作用[J].植物生理学报,2015,51(11):1855-1860.
    [9]Farhat M B,Fourati A,Chouayekh H.Co-expression of the pyrroloquinoline quinone and glucose dehydrogenase genes from Serratia marcescens CTM50650 conferred high mineral phosphate-solubilizing ability to Escherichia coli[J].Applied Biochemistry and Biotechnology,2013,170:1738-1750.
    [10]Wagh J,Bhandari P,Shah S,et al.Overexpression of citrate operon in Herbaspirillum seropedicae Z67 enhances organic acid secretion,mineral phosphate solubilization and growth promotion of Oryza sativa[J].Plant and Soil,2014,383:73-86.
    [11]Shahid M,Hameed S,Tariq M,et al.Characterization of mineral phosphate-solubilizing bacteria for enhanced sunflower growth and yield-attributing traits[J].Annals of Microbiology,2015,65:1525-1536.
    [12]Jain R,Saxena J,Sharma V.Solubilization of inorganic phosphates by Aspergillus awamori S19 isolated from rhizosphere soil of a semi-arid region[J].Annals of Microbiology,2012,62:725-735.
    [13]Mendes G de O,Freitas A L M de,Pereira O L,et al.Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources[J].Annals of Microbiology,2014,64:239-249.
    [14]Li X L,Luo L J,Yang J S,et al.Mechanisms for solubilization of various insoluble phosphates and activation of immobilized phosphates in different soils by an efficient and salinity-tolerant Aspergillus nigerstrain An2[J].Applied Biochemistry and Biotechnology,2015,175:2755-2768.
    [15]张金然,缑艳霞,孙丽鹏.固氮螺菌157对玉米、向日葵的促生长作用[J].江苏农业科学,2014,42(12):116-119.
    [16]李娜,乔志伟,洪坚平,等.溶磷混合菌肥对石灰性褐土磷素养分及解析特性的影响[J].应用与环境生物学报,2014,20(4):662-668.
    [17]陈浩,汪玉,袁佳慧,等.太湖稻麦轮作区减施磷肥对土壤供磷和小麦吸收磷的影响[J].农业环境科学学报,2018,37(4):741-746.
    [18]杨晓云,陈志谊,蒋盼盼,等.解淀粉芽孢杆菌B1619对番茄的促生作用[J].中国生物防治学报,2016,32(3):349-356.
    [19]Idriss E E,Makarewicz O M,Farouk A,et al.Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growthpromoting effect[J].Microbiology,2002,148(7):2097-2109.
    [20]宋永燕,李平,李姝晋,等.生防细菌LM-3对水稻的促生性和诱导抗性研究[J].西南农业大学学报,2006,19(3):438-441.
    [21]Zhao L F,Xu Y J,Lai X H,et al.Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters[J].Braziilian Journal of Microbiology,2015,46(4):977-989.
    [22]崔晓双,王伟,张如,等.基于根际营养竞争的植物根际促生菌的筛选及促生效应研究[J].南京农业大学学报,2015,38(6):958-966.
    [23]蒋欣梅,夏秀华,于锡宏,等.微生物解磷菌肥对大棚茄子生长及土壤有效磷利用的影响[J].浙江大学学报(理学版),2012,39(6):685-688.
    [24]郜春花,卢朝东,张强.解磷菌剂对作物生长和土壤磷素的影响[J].水土保持学报,2006,20(4):54-56,109.
    [25]乔俊卿,刘邮洲,余翔,等.集成生物防治和秸秆还田技术对设施番茄增产及土传病害防控效果研究[J].中国生物防治学报,2013,29(4):547-554.