过渡金属硫化物在锂离子电池中的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress of transition metal sulfides in lithium-ion batteries
  • 作者:李宗峰 ; 董桂霞 ; 亢静锐 ; 李雷 ; 吕易楠
  • 英文作者:LI Zong-feng;DONG Gui-Xia;KANG Jing-rui;LI Lei;LV Yi-nan;Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials,Laboratory of Environment Functional Materials of Tangshan City,College of Materials Science and Engineering,North China University of Science and Technology;
  • 关键词:锂离子电池 ; 电极材料 ; 过渡金属硫化物
  • 英文关键词:lithium-ion battery;;electrode material;;transition metal sulfide
  • 中文刊名:DYJS
  • 英文刊名:Chinese Journal of Power Sources
  • 机构:华北理工大学材料科学与工程学院河北省无机非金属重点实验室唐山市环境功能材料重点实验室;
  • 出版日期:2019-06-20
  • 出版单位:电源技术
  • 年:2019
  • 期:v.43;No.345
  • 语种:中文;
  • 页:DYJS201906044
  • 页数:5
  • CN:06
  • ISSN:12-1126/TM
  • 分类号:142-146
摘要
锂离子电池的性能很大程度上取决于锂离子电池所用的电极材料。综述了近几年来锂离子电池中的过渡金属硫化物(硫化锰、硫化铁、硫化镍、硫化钼、硫化钨、硫化钴和硫化铜)及其复合材料在不同结构(一维、二维、三维结构)中的最新研究进展,例如一维多孔FeS_2@C纳米线、WS_2/碳纳米纤维(WS_2/CNFs)、金属硫化物纳米结构和三维石墨烯网络组成的纳米复合物(MnS/G)等。
        The performance of lithium-ion battery largely depends on the electrode materials used in lithium-ion batteries. The latest research progress of transition metal sulfides(manganese sulfide, iron sulfide, nickel sulfide,molybdenum sulfide, tungsten sulfide, cobalt sulfide and copper sulfide) and its composites in different structures(1D and 2D,3D structure of different research in progress) in lithium-ion batteries is summarized, such as onedimensional porous FeS_2@C nanowires, WS_2/carbon nanofibers(WS_2/CNFs), nanocomposites composed of metal sulfide nanostructures and three-dimensional graphene networks(MnS/G) and so on.
引文
[1] XU X, JI S, GU M, et al. In situ synthesis of Mn S hollow microspheres on reduced graphene oxide sheets as high-capacity and long-life anodes for Li-and Na-ion batteries[J]. Acs Applied Materials&Interfaces, 2015, 7(37):20957.
    [2] REN Y R,WANG J W,HUANG X B, et al.Γ-MnS/reduced graphene oxide nanocomposites with great lithium storage capacity[J]. Solid State Ionics, 2015, 278:138-143.
    [3] JIN P, ZHANG X, WANG J. Mesoporousγ-MnS nanospheres as anode materials for Li-ion batteries[J]. Materials Letters, 2017, 188:13-16.
    [4] HAO Y, CHEN C, YANG X, et al. Studies on intrinsic phase-dependent electrochemical properties of Mn S nanocrystals as anodes for lithium-ion batteries[J]. Journal of Power Sources, 2017, 338:9-16.
    [5] CHEN D, QUAN H, LUO X, et al. 3-D graphene cross-linked with mesoporous Mn S clusters with high lithium storage capability[J].Scripta Materialia, 2014, 76:1-4.
    [6] LI Z, XU R, DENG S, et al. Mn S decorated N/S codoped 3D graphene used as cathode for the lithium-sulfur battery[J]. Applied Surface Science, 2018, 433:10-15.
    [7] MA W,LIU X, LEI X, et al. Micro/nano-structured Fe S2for high energy efficiency rechargeable Li-FeS2battery[J]. Chemical Engineering Journal, 2018, 334:725-731.
    [8] ZHANG F, WANG C, HUANG G, et al. Fe S2@C nanowires derived from organic-inorganic hybrid nanowires for high-rate and long-life lithium-ion batteries[J]. Journal of Power Sources, 2016,328:56-64.
    [9] GAN Y, XU F, LUO J, et al. One-pot biotemplate synthesis of Fe S2,decorated sulfur-doped carbon fiber as high capacity anode for lithium-ion batteries[J]. Electrochimica Acta, 2016, 209:201-209.
    [10] PI W, MEI T, LI J, et al. Durian-like NiS2@r GO nanocomposites and their enhanced rate performance[J]. Chemical Engineering Journal, 2018, 334:275-281.
    [11] HAN D, XIAO N, LIU B, et al. One-pot synthesis of core/shellstructured NiS@onion-like carbon nanocapsule as a high-performance anode material for lithium-ion batteries[J]. Materials Letters, 2017, 196:119-122.
    [12] LI X, CHEN Y, ZOU J, et al. Stable freestanding Li-ion battery cathodes by in situ, conformal coating of conducting polypyrrole on NiS-carbon nanofiber films[J]. Journal of Power Sources, 2016,331:360-365.
    [13] LI H, MA L, CHEN W X, et al. Synthesis of MoS2/C nanocomposites by hydrothermal route used as Li-ion intercalation electrode materials[J]. Materials Letters, 2009, 63(15):1363-1365.
    [14] LV Z, ZHOU H, LIU H, et al. Self-assembled hierarchical hollow Cu S@MoS2microcubes with superior lithium storage[J].Electrochimica Acta, 2017, 250:376-383.
    [15] ZHOU S S,CHEN J, GAN L, et al. Scalable production of selfsupported WSe/CNFs by electrospinning as the anode for high-performance lithium-ion batteries[J]. Science Bulletin, 2016, 61(3):227-235.
    [16] LV W, XIANG J, WEN F, et al. Chemical vapor synthesized WS2-embedded polystyrene-derived porous carbon as superior long-term cycling life anode material for li-ion batteries[J]. Electrochimica Acta, 2015, 153:49-54.
    [17] WANG H, MA J, LIU S, et al. CoS/CNTs hybrid structure for improved performance lithium ion battery[J]. Journal of Alloys&Compounds, 2016, 676:551-556.
    [18] ZHANG Y, WANG N, SUN C, et al. 3D spongy CoS2nanoparticles/carbon composite as high-performance anode material for lithium/sodium ion batteries[J]. Chemical Engineering Journal,2018, 332:370-376.
    [19] WANG Q, JIAO L, HAN Y, et al. Co S2hollow spheres:fabrication and their application in lithium-ion batteries[J]. Journal of Physical Chemistry C, 2011, 115(16):8300-8304.
    [20] LUO W, XIE Y, WU C, et al. Spherical CoS2@carbon core-shell nanoparticles:one-pot synthesis and Li storage property[J]. Nanotechnology, 2008, 19(7):075602.
    [21] ZHU X, MENG Z, YING H, et al. A novel Co S2/reduced graphene oxide/multiwall carbon nanotubes composite as cathode for high performance lithium ion battery[J].Chemical Physics Letters, 2017,684:191-196.
    [22] QIN A, JI J, DU R, et al. Hydrothermal synthesis and electrochemical performance of CuS@sisal fiber carbon composite lithium-ion battery anodes[J]. Composites Communications,2018,7:47-50.
    [23] WANG Y,ZHANG Y,LI H, et al.Realizing high reversible capacity:3D intertwined CNTs inherently conductive network for CuS as an anode for lithium ion batteries[J]. Chemical Engineering Journal,2017, 332: 49-56.
    [24] IQBAL S, BAHADUR A, SAEED A, et al. Electrochemical performance of 2D polyaniline anchored CuS/graphene nano-active composite as anode material for lithium-ion battery[J]. Journal of Colloid&Interface Science, 2017, 502:16-23.