AP1000核岛厂房考虑重力水箱流体-结构相互作用的地震易损性分析研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Seismic fragility analysis of an AP1000 shield building considering the fluid-structure interaction of a passive gravity water box
  • 作者:李静 ; 陈健云 ; 徐强 ; 渠亚卿
  • 英文作者:LI Jing;CHEN Jianyun;XU Qiang;QU Yaqing;Faculty of Infrastructure Engineering, Dalian University of Technology;
  • 关键词:AP1000核电站 ; 屏蔽厂房 ; 地震易损性 ; 重力水箱 ; 流固耦合
  • 英文关键词:AP1000 nuclear plant;;shield building;;seismic fragility;;passive safety gravity water tank;;fluid-structure interaction analysis
  • 中文刊名:ZDCJ
  • 英文刊名:Journal of Vibration and Shock
  • 机构:大连理工大学建设工程学部;
  • 出版日期:2019-02-28
  • 出版单位:振动与冲击
  • 年:2019
  • 期:v.38;No.336
  • 基金:国家公益性行业基金地震科研专项(201508005);; 国家自然科学基金(51505148)
  • 语种:中文;
  • 页:ZDCJ201904023
  • 页数:8
  • CN:04
  • ISSN:31-1316/TU
  • 分类号:149-155+179
摘要
AP1000核岛屏蔽厂房非能动冷却系统对提升核电安全具有重要作用,但重力水箱在强震下的流体-结构相互作用对屏蔽厂房的地震动响应有很大影响。基于ALE流固耦合分析方法,研究了重力水箱内不同流体高度对屏蔽厂房在强震下的地震动易损性的影响,并对重力水箱内四种隔板设计方案下的厂房地震动易损性进行了比较。结果表明:AP1000核电厂房在水箱内无水的情况下易损性最高,其次是保证72 h供水的标准水位,在水位高度为标准水位约2/3时厂房易损性最小;水箱内隔板设置形式对厂房易损性有很大影响。
        Non-active cooling system plays an important role in improving the security of an AP1000 nuclear power plant. But the fluid-structure interaction in gravity water box has great effects on the earthquake response of a NI shield building. In this paper, the seismic fragility analysis of a NI shield building with different water levels in a gravity water box were performed based on the ALE fluid-structure coupling algorithm and the effects of different water height on seismic fragility curves were compared. The seismic fragility curves were also obtained for proposed four kinds of baffle design schemes and the effects on seismic fragility curves were analyzed. The results show that, when there is no water in the gravity water box, the fragility of the NI shield is the highest; and the next is in the condition of normal water level which could guarantee water supply for 72 hours. NI shield buildings possess the lowest fragility when water level is 2/3 of normal water level; and the setting form of the baffles also has great effects on the fragility of the shield building.
引文
[1]毛庆,吴应喜,张健,等.福岛核事故后中国广东核电集团核电厂抗震设计和评估进展[J].中国工程科学,2013,15(4):46-51.MAO Qing,WU Yingxi,ZHANG Jian,et al.The development on seismic design and evaluation of CGNPC after Fukushima accident[J].Engineering Science,2013,15(4):46-51
    [2]林皋.核电工程结构抗震设计研究综述I[J].人民长江,2011,42(19):1-6.LIN Gao.Review on seismic structure design of nuclear power plant[J].Yangtze River,2011,42(19):1-6.
    [3]AQUELET N,SOULI M,GABRYS J,et al.A new ALEformulation for sloshing analysis[J].Structural Engineering and Mechanics,2003,16(4):423-440.
    [4]SOULI M,ZOLESIO J P.Arbitrary lagrangian-eulerian and free surface methods in fluid mechanics[J].Computer Methods in Applied Mechanics and Engineering,2001,191(3/4/5):451-466.
    [5]ZHANG A,SUZUKI K.A comparative study of numerical simulations for fluid-structure interaction of liquid-filled tank during ship collision[J].Ocean Engineering,2007,34(5/6):645-652.
    [6]OZDEMIR Z,SOULI M,FAHAHJAN Y M.Application of nonlinear fluid-structure interaction methods to seismic analysis of anchored and unanchored tanks[J].Engineering Structures,2010,32(2):409-423.
    [7]OZDEMIR Z,SOULI M,FAHAHJAN Y M.Application of nonlinear fluid-structure interaction methods to seismic analysis of anchored and unanchored tanks[J].Engineering Structures,2010,32(2):409-423.
    [8]ANGHILERI M,CASTELLETTIL M L,TIRELLI M.Fluidstructure interaction of water filled tanks during the impact with the ground[J].International Journal of Impact Engineering,2005,31(3):235-254.
    [9]LU Daogang,LIU Yu,ZENG Xiaojia,et al.AP1000 shield building dynamic response for different water levels of PCCWST subjected to seismic loading considering FSI[J].Science and Technology of Nuclear Installations,2015,67:8-15.
    [10]PARK Y J,HOFMAYER C H,CHOKSHI N C.Survey of seismic fragilities used in PRA studies of nuclear power plants[J].Elsevier Science Ltd,1998,62:185-195.
    [11]JOE Y H,CHO S G.Seismic fragility analyses of nuclear power plant structures based on the recorded earthquake data in korea[J].Nuclear Engineering and Design,2005,235:1867-1874.
    [12]侯炜,史庆轩.不同地震作用方向下混凝土核心筒基于增量动力分析的抗震性能评估[J].振动与冲击,2013,32(14):116-121.HOU Wei,SHI Qingxuan.Aseismic behavior evaluation for a reinforced concrete core wall based on incremental dynamic analysis in different earthquake directions[J].Journal of Vibration and Shock,2013,32(14):116-121.
    [13]赵春风.强震及爆炸荷载作用下核岛厂房动力响应及减震抗爆措施研究[D].大连:大连理工大学,2014.
    [14]BAKER J W,CORNELL C A.Vector-valued ground motion intensity measures for probabilistic seismic demand analysis[R].Berkeley:Pacific Earthquake Engineering Research Center,2006.
    [15]CHEN J,ZHAO C,XU Q,et al.Seismic analysis and evaluation of the base isolation system in AP1000 NI under SSE loading[J].Nuclear Engineering&Design,2014,278:117-133.