高海拔特高压电抗器套管绝缘结构设计分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Insulation Structure Design for High Altitude UHV Reactor Bushing
  • 作者:张施令 ; 彭宗仁
  • 英文作者:ZHANG Shiling;PENG Zongren;State Grid Chongqing Electric Power Company Chongqing Electric Power Research Institute;State Key Laboratory of Electrical Insulation and Power Equipment,Xi'an Jiaotong University;
  • 关键词:特高压电抗器套管 ; 外绝缘 ; 电场仿真 ; 结构设计
  • 英文关键词:UHV reactor bushing;;external insulation;;electric field simulation;;structure design
  • 中文刊名:GYDQ
  • 英文刊名:High Voltage Apparatus
  • 机构:国网重庆市电力公司电力科学研究院;西安交通大学电力设备电气绝缘国家重点实验室;
  • 出版日期:2018-08-16
  • 出版单位:高压电器
  • 年:2018
  • 期:v.54;No.353
  • 基金:重庆市基础科学与前沿技术研究(cstc2017jcyi AX0461)~~
  • 语种:中文;
  • 页:GYDQ201808031
  • 页数:8
  • CN:08
  • ISSN:61-1127/TM
  • 分类号:205-212
摘要
特高压电抗器套管是实现电力电抗器与电站架空线间电气连接的重要设备,高海拔应用环境为电抗器套管电气结构设计提出了更高要求,文中主要针对其内外绝缘结构设计进行讨论。研究内容主要分为3部分:(1)讨论了电抗器套管外瓷套干弧距离计算,并从套管尾部、套管均压罩、套管内绝缘3方面进行了设计和分析;(2)建立了电抗器套管三维电场仿真计算模型;(3)在实际运行环境下对其绝缘性能进行计算分析。研究结果表明:高海拔条件下应对电抗器套管外部金具及外瓷套闪络电压进行海拔修正,计算表明金具、闪络电压修正系数分别为2.07、1.36,且套管端部应装配双环型均压罩;套管外部瓷套的绝缘距离设计为8 500 mm,且尾部绝缘距离设计为1 955 mm;有限元校核计算表明,顶部均压环表面最大场强为1.251 kV·mm~(-1),尾部均压环表面最大场强为16.962 kV·mm~(-1);套管芯子靠近中心导杆侧轴向场强略高于法兰侧,场强最大值为0.550 kV·mm~(-1)。计算结果可为特高压输电工程用电抗器套管绝缘结构设计提供一定的理论依据。
        The ultra high voltage reactor bushing is an important equipment to realize the electrical connection between the reactor and the valve tower. High altitude application environment puts forward higher requirement for electrical structure design of reactor bushing. The paper mainly discusses the design of the internal and external insulation structure. The research content are divided into three parts,the calculation of dry arc distance of the bushing porcelain is discussed. The design and analysis of the tail of the bushing,the corona ring and the inner insulation of the bushing has been done. The three dimensional electric field simulation models have been set up to calculate and analyze the insulation performance of the bushing. The results show that the elevation correction of the external ring and the flashover voltage of the porcelain under high altitude should be done,and the calculation shows that the correction coefficient are 2.07 and 1.36 respectively,and the end of the bushing should install with double type ring.The insulation distance of the hollow porcelain insulator is designed as 8 500 mm. The insulation distance of the bushing tail is designed as 1 955 mm. The maximum field strength of the corona ring is 1.251 kV·mm~(-1),and the maximum field strength on the surface of tail corona ring is 16.962 kV·mm~(-1). The axial field strength of the bushing core near center conductor is higher than the flange side,and the maximum field strength is 0.55 kV·mm~(-1). The results of the paper can provide the theoretical basis for the design of the insulation of the reactor transformer bushing used in the UHV transmission project.
引文
[1]梁旭明,张平,常勇.高压直流输电技术现状及发展前景[J].电网技术,2012,36(4):1-9.LIANG Xuming,ZHANG Ping,CHANG Yong.Recent advances in high-voltage direct-current power transmission and its developing potential[J].Power System Technology,2012,36(4):1-9.
    [2]谢恒堃.电气绝缘结构设计原理[M].北京:机械工业出版社,1992.XIE Hengkun.Electrical insulation design principles[M].Beijing:Mechanical Industry Press,1992.
    [3]张学成,檀金华,牛万宇.±1 100 kV直流输电工程换流变压器阀侧套管的设计[J].高电压技术,2012,38(2):393-399.ZHANG Xuecheng,TAN Jinhua,NIU Wanyu.Bushings design of converter transformer’s valve side of UHVDC transmission project[J].High Voltage Engineering,2012,38(2):393-399.
    [4]陈忠,伍衡,黄和燕,等.±800 kV直流穿墙套管耐压试验发生外闪络原因分析及改进措施[J].高电压技术,2011,37(9):2133-2139.CHEN Zhong,WU Heng,HUANG Heyan,et al.Cause analysis and improvement measure of±800 kV DC wall bushing occurring flashover during overvoltage withstand test[J].High Voltage Engineering,2011,37(9):2133-2139.
    [5]ROKUNOHE T,KATO T,HIROSE M,et al.Development of insulation technology in compact SF6 gas-filled bushings:Development of compact 800 kV SF6 gas-filled bushings[J].Electrical Engineering in Japan,2010,171(1):19-27.
    [6]HOSOKAWA M,OKUMURA K,YAMAGIWA T,et al.Dielectric performance of improved gas insulated bushing for UHV GIS[J].IEEE Transactions on Power Delivery,1987,2(2):359-366.
    [7]NIE D C,ZHANG H L,CHEN Z,et al.Optimization design of grading ring and electrical field analysis of 800 kV UH-VDC wall bushing[J].IEEE Transactions on Dielectrics and Electrical Insulation,2013,20(4):1361-1368.
    [8]魏晓光,宗文志,王高勇,等.±1 100 kV特高压直流换流阀外绝缘操作冲击放电试验及海拔校正研究[J].中国电机工程学报,2014,34(12):1996-2003.WEI Xiaoguang,ZONG Wenzhi,WANG Gaoyong,et al.Experimental studies on switching impulse flashover characteristics of external insulation and altitude correction methods for±1 100 kV UHVDC converter valves[J].Proceedings of the CSEE,2014,34(12):1996-2003.
    [9]王永强,欧阳宝龙,连莎莎,等.高海拔地区积雪复合绝缘子沿面电场分布研究[J].高压电器,2016,52(6):115-123.WANG Yongqiang,OUYANG Baolong,LIAN Shasha,et al.Study on electric field distribution along the surface of snowed composite insulator in high altitude area[J].High Voltage Apparatus,2016,52(6):115-123.
    [10]王健一,李金忠,李军,等.高海拔直流工程主设备状态评估的修正方法[J].中国电机工程学报,2016,36(17):4786-4792.WANG Jianyi,LI Jinzhong,LI Jun,et al.Modification of condition assessment for HVDC equipment used in high altitude area[J].Proceedings of the CSEE,2016,36(17):4786-4792.
    [11]肖淦,昌明辉,吴学恩,等.浅析高海拔地区使用的套管内绝缘长度改变[J].变压器,2017,54(10):10-13.XIAO Gan,CHANG Minghui,WU Xue’en,et al.Analysis of insulation length change of bushing used in high altitude area[J].Transformer,2017,54(10):10-13.
    [12]罗晓庆,胡伟,徐涛,等.±1 100 kV直流U型结构穿墙套管空气间隙放电特性及间隙距离选择[J].高电压技术,2017,43(3):946-952.LUO Xiaoqing,HU Wei,XU Tao,et al.Air gap flashovercharacteristicsandselectionofgapdistancesfor±1100 kV DC U-shaped wall bushing[J].High Voltage Engineering,2017,43(3):946-952.
    [13]廖永力,李锐海,李小建,等.典型空气间隙放电电压修正的试验研究[J].中国电机工程学报,2012,32(28):171-176.LIAO Yongli,LI Ruihai,LI Xiaojian,et al.Experimental research on typical air gap test voltage correction[J].Proceedings of the CSEE,2012,32(28):171-176.
    [14]徐建源,任春为,司秉娥,等.40.5 kV SF6充气式开关柜三维电场分析[J].中国电机工程学报,2008,28(15):136-140.XU Jianyuan,REN Chunwei,SI Bing’e,et al.Three dimensional electric field analysis of 40.5 kV SF6 cubicle gas-insulated metal-enclosed switchgear[J].Proceedings of the CSEE,2008,28(15):136-140.
    [15]张施令,彭宗仁,吴昊.±800 kV换流变压器阀侧干式套管的损耗分析[J].电网技术,2014,38(7):1758-1764.ZHANG Shiling,PENG Zongren,WU Hao.Analysis on power loss of valve-side RIP bushing for±800 kV converter transformer[J].Power System Technology,2014,38(7):1758-1764.
    [16]林莘,李鑫涛,徐建源,等.均匀电场下SF6气体击穿电压的数值计算及光谱实验研究[J].中国电机工程学报,2016,36(1):301-309.LIN Xin,LI Xintao,XU Jianyuan,et al.Research on numerical computation of SF6 breakdown voltages and spectral ex-206periment in uniform electric fields[J].Proceedings of the CSEE,2016,36(1):301-309.
    [17]温苗,林莘,仲思蒙.变压器套管传热性能的数值模拟和试验验证[J].高电压技术,2016,42(9):2956-2961.WEN Miao,LIN Xin,ZHONG Simeng.Numerical simulation and experimental study of heat transfer characteristics in transformer bushing[J].High Voltage Engineering,2016,42(9):2956-2961.
    [18]张佳,林莘,苏安,等.两种典型电极下SF6/CF4混合气体击穿特性的实验研究[J].高压电器,2016,52(12):93-98.ZHANG Jia,LIN Xin,SU An,et al.Experiment on breakdown characteristics of SF6/CF4 gas mixture under two typical electrode arrangements[J].High Voltage Apparatus,2016,52(12):93-98.
    [19]林莘,温苗,沈文,等.复杂电场作用下换流变压器套管绝缘特性分析[J].高压电器,2015,51(4):1-6.LIN Xin,WEN Miao,SHEN Wen,et al.Analysis on insulation property of converter transformer bushing under complex voltage[J].High Voltage Apparatus,2015,51(4):1-6.
    [20]戴佺民,齐波.油浸纸套管电容薪资极板边缘电场分布的仿真及优化方法[J].电网技术,2017,41(5):1683-1688.DAI Quanmin,QI Bo.Electric field simulation and optimization methods of capacitor core foil edge of oil-impregnated paper bushing[J].Power System Technology,2017,41(5):1683-1688.
    [21]刘奋霞,刘晔,禹云长,等.特高压油浸式铁心并联电抗器内部温度场数值计算与实验研究[J].高压电器,2017,53(1):163-168.LIU Fenxia,LIU Ye,YU Yunchang,et al.Numerical and experimental research of internal temperature field of oilimmersed core shunt reactor with ultra-high voltage[J].High Voltage Apparatus,2017,53(1):163-168.