锰卟啉高价金属氧化物及氢氧化物对甲苯α-C—H键的活化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Activation of Toluene α-C—H Bond by Mn-oxo Porphyrin and Mn-hydroxo Porphyrin
  • 作者:戴宇萍 ; 王浩 ; 于艳敏 ; 宋旭锋
  • 英文作者:DAI Yu-ping;WANG Hao;YU Yanmin;SONG Xu-feng;Beijing Key Laboratory for Green Catalysis and Separation,Department of Chemistry and Chemical Engineering,Beijing University of Technology;
  • 关键词:锰卟啉 ; 活化 ; C—H键
  • 英文关键词:manganese porphyrin;;activation;;C—H bond
  • 中文刊名:HXSJ
  • 英文刊名:Chemical Reagents
  • 机构:北京工业大学化学化工系绿色催化与分离北京市重点实验室;
  • 出版日期:2019-06-17 10:55
  • 出版单位:化学试剂
  • 年:2019
  • 期:v.41
  • 基金:国家自然科学基金资助项目(21376010,21776021);; 北京市属高校高水平教师队伍建设支持计划项目(IDHT20180504)
  • 语种:中文;
  • 页:HXSJ201908002
  • 页数:6
  • CN:08
  • ISSN:11-2135/TQ
  • 分类号:15-20
摘要
锰卟啉作为仿生催化剂催化活化烃类饱和C—H键的反应中,锰卟啉高价金属氧化物和氢氧化物均有活化C—H键的能力。采用密度泛函理论对锰卟啉高价金属氧化物及氢氧化物活化甲苯α-C—H键进行研究,考察影响其活性的本质因素。结果发现,锰卟啉高价金属氧化物和氢氧化物的单重态由于没有氧自由基特征而不具备活化甲苯α-C—H键的能力。高自旋锰卟啉金属氧化物活化甲苯α-C—H键能力较强,金属氢氧化物的活化能力较弱。过渡态结构的形变能和结合能共同决定了活化能的大小,且形变能是影响其活性的关键因素。
        In the catalytic oxidation of saturated C—H bond of hydrocarbons by manganese porphyrin as biomimetic catalyst,both high-valence Mn-oxo porphyrin and Mn-hydroxo porphyrin have the ability to activate C—H bond.The activation of toluene α-C—H bond by high-valence Mn-oxo porphyrin and Mn-hydroxo porphyrin were investigated using density functional theory,and the key factors affecting the activity were investigated.The results show that the singlet state structures of Mn-oxo porphyrin and Mnhydroxo porphyrin have no ability to activate the C—H bond due to the absence of oxyl radical. The high spin states of Mn-oxo porphyrin have the higher activity and Mn-hydroxo porphyrin has the lower activity to activate toluene α-C—H bond.The activation energy was determined by interaction energy and distortion energy.Distortion energy is the key factor affecting the activity of Mnoxo porphyrin and Mn-hydroxo porphyrin.
引文
[1]COSTAS M.Selective C—H oxidation catalyzed by metalloporphyrins[J].Coordin.Chem.Rev.,2011,255(23/24):2 912-2 932.
    [2]赵文伯,路沛贤,邓亚茹,等.meso-苯基-4-吡啶基取代卟啉混合物的合成规律研究[J].化学试剂,2018,40(5):487-490.
    [3]唐艳柳,蔡烨,吴腊梅,等.金属卟啉催化氧气选择氧化对甲基异丙苯绿色合成对甲基苯乙酮[J].化学试剂,2016,38(2):97-101.
    [4]GROVES J T,MCCLUSKY G A. Aliphatic hydroxylation via oxygen rebound.Oxygen transfer catalyzed by iron[J].J.Am.Chem.Soc.,1976,98(3):859-861.
    [5]RITTLE J,GREEN M T.Cytochrome P450 compound I:capture,characterization,and C—H bond activation kinetics[J].Science,2010,330(6 006):933-937.
    [6]WANG T,SHE Y B,FU H Y,et al.Selective cyclohexane oxidation catalyzed by manganese porphyrins and co-catalysts[J].Catal.Today,2016,264:185-190.
    [7]TORRES M G D A,SILVA V S D,IDEMORI Y M,et al.Manganese porphyrins as efficient catalysts in solvent-free cyclohexane oxidation[J]. Arab. J. Chem.,2017,https://doi.org/10.1016/j.arabjc.2017.12.007.
    [8]GROVES J T,LEE J,MARLA S S.Detection and characterization of an oxomanganese(Ⅴ)porphyrin complex by rapid-mixing stopped-flow spectrophotometry[J]. J. Am.Chem.Soc.,1997,119(27):6 269-6 273.
    [9]BALCELLS D,RAYNAUD C,CRABTREE R H,et al.A rational basis for the axial ligand effect in C—H oxidation by[MnO(porphyrin)(X)]+(X=H2O,OH-,O2-)from a DFT study[J]. Inorg. Chem.,2008,47(21):10 090-10 099.
    [10]BALCELLS D,RAYNAUD C,CRABTREE R H,et al.The rebound mechanism in catalytic C—H oxidation by MnO(tpp)Cl from DFT studies:electronic nature of the active species[J]. Chem. Commun.,2008,(6):744-746.
    [11]DE ANGELIS F,JIN N,CAR R,et al.Electronic structure and reactivity of isomeric oxo-Mn(Ⅴ)porphyrins:effects of spin-state crossing and p Ka modulation[J].Inorg.Chem.,2006,45(10):4 268-4 276.
    [12]HULL J F,BALCELLS D,SAUER E L O,et al.Manganese catalysts for C—H activation:an experimental/theoretical study identifies the stereoelectronic factor that controls the switch between hydroxylation and desaturation pathways[J]. J. Am. Chem. Soc.,2010,132(22):7 605-7 616.
    [13]BALCELLS D,RAYNAUD C,CRABTREE R H,et al.C—H oxidation by hydroxo manganese(Ⅴ)porphyrins:a DFT study[J]. Chem. Commun.,2009,13:1 772-1 774.
    [14]FRISCH M J,TRUCKS G W,SCHLEGEL H B,et al.Gaussian 16,Revision. A. 03,Gaussian,Inc.[CP].Wallingford CT,2016.
    [15]BECKE A D.Density-functional thermochemistry.Ⅰ.The effect of the exchange-only gradient correction[J]. J.Chem.Phys.,1992,96(3):2 155-2 160.
    [16]BECKE A D.Density-functional thermochemistry.Ⅱ.The effect of the Perdew-Wang generalized-gradient correlation correction[J].J.Chem.Phys.,1992,97(12):9 173-9 177.
    [17]BECKE A D.Density-functional thermochemistry.Ⅲ.The role of exact exchange[J].J.Chem.Phys.,1993,98(7):5648-5652.
    [18]REED A E,CURTISS L A,WEINHOLD F.Intermolecular interactions from a natural bond orbital,donor-acceptor viewpoint[J].Chem.Rev.,1988,88(6):899-926.
    [19]SONG W J,SEO M S,GEORGE S D,et al. Synthesis,characterization,and reactivities of manganese(Ⅴ)-oxo porphyrin complexes[J]. J. Am. Chem. Soc.,2007,129(5):1 268-1 277.
    [20]ESS D H,HOUK K N.Distortion/interaction energy control of 1,3-dipolar cycloaddition reactivity[J]. J. Am.Chem.Soc.,2007,129(35):10 646-10 647.