基于LBM方法的运煤卡车气动阻力研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Study on Aerodynamic Drag Analysis to Coal Trucks Based on LBM
  • 作者:李明达 ; 门玉琢 ; 冀秉魁 ; 姚雪萍
  • 英文作者:LI Ming-da;School of Mechanical & Electrical Engineering,Changchun Institute of Technology;
  • 关键词:格子玻尔兹曼方法(LBM) ; 运煤卡车 ; 空气动力学 ; 格子无关性试验
  • 英文关键词:lattice boltzmann method(LBM);;coal truck;;aerodynamics;;lattice independence test
  • 中文刊名:CGCZ
  • 英文刊名:Journal of Changchun Institute of Technology(Natural Sciences Edition)
  • 机构:长春工程学院机电工程学院;
  • 出版日期:2018-06-15
  • 出版单位:长春工程学院学报(自然科学版)
  • 年:2018
  • 期:v.19;No.71
  • 语种:中文;
  • 页:CGCZ201802004
  • 页数:4
  • CN:02
  • ISSN:22-1323/N
  • 分类号:19-21+35
摘要
针对煤炭物流业的运输特点,利用基于格子玻尔兹曼方法(LBM)的空气动力学软件XFlow进行运煤卡车的气动阻力研究。首先,建立了1∶10比例的3轴运煤卡车模型,根据车辆模型尺寸确定了虚拟风洞尺寸;然后,通过格子无关性试验确定了车辆模型的空气动力学参数与车辆模型的空气阻力系数;最后,根据模型表面速度场与湍流强度的分布情况,分析了货厢密闭性与各部件对整车气动特性的影响。仿真结果显示:车辆模型的气动阻力系数为0.724;空载工况下,货厢裸露会增加整车7.5%的空气阻力。
        According to the transport characteristic of coal logistics industry,this paper studies the aerodynamic characteristic on the coal truck by using the CFD software XFlow based on the Lattice Boltzmann Method(LBM).Firstly,the 1∶10 scale 3-axles coal truck model has been established,and the size of the virtual wind tunnel is determined according to the size of vehicle model.Then,the aerodynamic parameters of the CFD analysis and the air drag coefficient of the model are determined by Lattice Independence Test.Finally,according to the distribution of surface velocity field and turbulence intensity of the model,the airtightness of the cargo compartment and the influence of various components on the aerodynamic characteristics of the vehicle are analyzed.The simulation results show that:the aerodynamic resistance coefficient of the model is 0.724,and the air drag will increase by 7.5% under the condition of open-cargo-box.
引文
[1]BP p.l.c.BP Statistical Review of World Energy 2017[R/OL].(2017-06-15)[2018-03-20].http://www.atlanticcouncil.org/events/past-events/us-launchbp-statistical-review-of-world-energy-2017.
    [2]国家发展改革委国家能源局.煤炭工业发展“十三五”规划[R/OL].(2017-06-05)[2018-03-20]http://www.rdrc.gov.cn/fzgggz/fzgh/ghwb/gjjgh/201706/t20170605_850004.html.
    [3]Bruneau C H,Mortazavi I,Gilli P,et al.Passive control around the two-dimensional square back ahmed body using porous devices[J].Journal of Fluids Engineering.2008,130(6):142-150.
    [4]Mania R,Lagoudasa D C,Rediniotis O K.Active skin for turbulent drag reduction[J].Smart Materials&Structures.2008,17(3):122-134.
    [5]谢峰,王秀英,雷小宝.鲨鱼皮减阻结构的几何建模与数值分析[J].系统仿真学报,2014,26(7):1472-1476.
    [6]Khosravi M,Mosaddeghi F,Oveisi M,et al.Aerodynamic drag reduction of heavy vehicles using append devices by CFD analysis[J].Journal of Central South University,2015,22(12):4645-4652.
    [7]李芳,赵刚,刘维新,等.仿生射流孔形状减阻性能数值模拟及实验研究[J].物理学报,2015,64(3):1-8.