基于热流固耦合的热水循环泵转子强度分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Strength Analysis of Hot Water Circulation Pump Rotor Based on Heat-flow-solid Coupling
  • 作者:朱炳坤 ; 晁长青 ; 刘永付 ; 王宝勤 ; 刘栋
  • 英文作者:ZHU Bingkun;CHAO Changqing;LIU Yongfu;WANG Baoqin;LIU Dong;Jiangsu University,School of Energy and Power Engineering;Jiangsu Yongyi Pump Industry Technology Group Co.Ltd.;
  • 关键词:热水循环泵 ; 转子系统 ; 基圆直径 ; 热流密度 ; 模态分析
  • 英文关键词:hot water circulation pump;;rotor system;;cutwater diameter;;strength analysis;;modal analysis
  • 中文刊名:HNKX
  • 英文刊名:Henan Science
  • 机构:江苏大学能源与动力工程学院;江苏永一泵业科技集团有限公司;
  • 出版日期:2019-04-01 10:57
  • 出版单位:河南科学
  • 年:2019
  • 期:v.37;No.244
  • 基金:扬州市自然科学基金项目(YZ2016116)
  • 语种:中文;
  • 页:HNKX201903013
  • 页数:5
  • CN:03
  • ISSN:41-1084/N
  • 分类号:79-83
摘要
基于Workbench平台,采用热-流-固耦合方法对热水循环泵内的转子系统施加温度和压力载荷进行计算,得到基圆直径D3=214 mm、D3=216 mm和D3=218 mm下转子系统的热流密度及等效应力的分布,讨论了不同蜗壳基圆直径对转子系统结构强度的影响规律,同时对转子系统进行模态分析.研究结果表明,泵轴与轮毂配合段的配合面以及叶轮螺母与叶轮的配合面上出现了热流密度最大值;基圆直径的改变对叶轮螺母上的热流密度以及最大等效应力影响很小;转子系统在第三阶模态下由轴线沿径向振动,最大变形出现在距中心轴线最远的叶轮外缘.
        Based on the Workbench platform,the heat-flow-solid coupling method is used to calculate the temperature and pressure loads of the rotor system in the hot water circulation pump. The distributions of heat flux and equivalent stress of the rotor system with the cutwater diameters of D3=214 mm,D3=216 mm and D3=218 mm are obtained. The influence mechanism of the diameter in the base of different volutes on the structural strength of the rotor system is discussed. At the same time,the modal analysis of the rotor system is carried out. The results show that the maximum heat flux density appears on the mating surface of the pump shaft and the hub mating section,as well as the mating surface of the impeller nut and the impeller. The change of the cutwater diameter has a little effect on the heat flux density and the maximum equivalent stress on the impeller nut. In the third-order mode,the rotor system as a whole is vibrated by the axis in the radial direction,and the maximum deformation occurs at the outer edge of the impeller farthest from the central axis.
引文
[1]蔡振东,张孝凤,邢文超,等.高温热水循环泵设计研究及应用[J].通用机械,2014(2):64-65.
    [2]WANG L,LI D C,YANG J S,et al.Modeling of thermal properties and failure of thermal barrier coatings with the use of finite element methods:a review[J].Journal of the European Ceramic Society,2016,36(6):1313-1331.
    [3]王勇,李雨,罗凯凯,等.排盐泵热流固耦合特性分析[J].流体机械,2017,45(12):22-26.
    [4]肖若富,朱文若,杨魏,等.基于双向流固耦合水轮机转轮应力特性分析[J].排灌机械工程学报,2013(10):862-866.
    [5]钟伟源,朱荣生,王秀礼,等.基于双向流固耦合的核主泵叶轮力学特性分析[J].排灌机械工程学报,2018,11(24):1-9.
    [6]钟林涛.基于流固耦合的核主泵叶轮结构力学分析[J].西部皮革,2018,40(5):136.
    [7]孔繁余,王婷,王文廷,等.基于流固耦合的高温泵叶轮应力有限元分析[J].江苏大学学报,2012,33(3):269-273.
    [8]孔繁余,蒋万明,王文廷,等.低温高速屏蔽泵汽蚀性能的流热耦合分析[J].华中科技大学学报,2012,40(5):24-28.
    [9]董亮,白羽,刘厚林,等.高温高压对冶金用热水循环泵结构强度的影响[J].华中科技大学学报(自然科学版),2015,43(3):28-31.
    [10]于复磊,李丹,张宗伟,等.基于热-流-固耦合方法的涡轮叶片数值计算[J].系统仿真技术,2014,10(4):339-345.
    [11]张智伟,施卫东,张德胜,等.基于热流固耦合的LNG低温潜液泵转子部件模态分析[J].排灌机械工程学报,2018,11(24):1-11.
    [12]刘宜,蒋跃,张人会,等.不同径向间隙对双蜗壳泵径向力影响的数值模拟[J].兰州理工大学报,2013,39(3):43-47.
    [13]王洋,刘静,王维军,等.蜗壳基圆对离心泵性能的影响[J].农机化研究,2012,34(6):190-194.
    [14]TANG W Z,YANG L,ZHU W,et al.Numerical simulation of temperature distribution and thermal-stress field in a turbine blade with multilayer-structure TBCs by a fluid-solid coupling method[J].Journal of Materials Science&Technology,2016,32(5):452-458.
    [15]HWANG S,SON C,SEO D,et al.Comparative study on steady and unsteady conjugate heat transfer analysis of a high pressure turbine blade[J].Applied Thermal Engineering,2016,99:765-775.
    [16]MELLOULI D,HADDAR N,K?STER A,et al.Hardness effect on thermal fatigue damage of hot-working tool steel[J].Engineering Failure Analysis,2014,45:85-95.
    [17]POURSAEIDI E,BAZVANDI H.Effects of emergency and fired shut down on transient thermal fatigue life of a gas turbine casing[J].Applied Thermal Engineering,2016,100:453-461.
    [18]QAYYUM F,SHAH M,SHAKEEL O,et al.Numerical simulation of thermal fatigue behavior in a cracked disc of AISI H-11tool steel[J].Engineering Failure Analysis,2016,62:242-263.
    [19]ZHANG M,JI X F,LI L J.A research on fatigue life of front axle beam for heavy-duty truck[J].Advances in Engineering Software,2016,91:63-68.