低空急流高度变化对水平轴风力机气动载荷的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influences of the Heights of Low-level Jet on Aerodynamic Loads of Horizontal Axis Wind Turbine
  • 作者:张旭耀 ; 杨从新 ; 何攀 ; 张亚光 ; 金锐
  • 英文作者:ZHANG Xuyao;YANG Congxin;HE Pan;ZHANG Yaguang;JIN Rui;School of Energy and Power Engineering, Lanzhou University of Technology;
  • 关键词:低空急流 ; 水平轴风力机 ; 气动载荷
  • 英文关键词:low-level jet;;horizontal axis wind turbine;;aerodynamic loads
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:兰州理工大学能源与动力工程学院;
  • 出版日期:2019-05-20
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.621
  • 基金:国家重点基础研究发展计划项目(973计划)(2014CB046201)~~
  • 语种:中文;
  • 页:ZGDC201910018
  • 页数:8
  • CN:10
  • ISSN:11-2107/TM
  • 分类号:198-205
摘要
对比分别由Great Plains Low-Level Jet谱模型和基于平面壁面射流原理建立的低空急流工程化模型得到的平均风速廓线,确定低空急流工程化模型中的参数。在此基础上,基于Von Karman谱和低空急流工程化模型建立不同高度的低空急流脉动风场,并将其作为FAST开源代码的输入条件计算和分析水平轴风力机的气动载荷。研究表明:当急流强度一定,急流高度由风轮扫掠面的底部位置增加到顶部位置时,风轮气动载荷发生了明显的变化,与最小值相比,风轮推力、横向力、纵向力、转矩、偏航力矩和倾覆力矩系数均方根的最大值分别增加了12.9%、75.6%、73.4%、27.7%、99.9%和98.5%。在低空急流条件下,风轮转矩和推力功率谱曲线峰值的频率与叶片通过频率的整数倍相关。研究结果可为低空急流条件下水平轴风力机气动载荷的分析提供参考。
        Comparing the average wind speed profiles obtained from the Great Plains Low-Level Jet(GP_LLJ) spectral model and the low-level jet(LLJ) engineering model based on the plane wall jet principle, the parameters in the LLJ engineering model were determined. On this basis, the LLJ fluctuating wind fields with different LLJ heights were simulated based on the Von Karman spectra model and LLJ engineering model, and were used as the input condition of FAST open source code to calculate and analyze the aerodynamic loads of the horizontal axis wind turbine. The results show that when the LLJ intensity is constant and the LLJ height increases from the bottom-tip to top-tip of the rotor, the RMS of the rotor aerodynamic load coefficients, including ones of thrust, torque, lateral force, longitudinal force, yaw moment and tilt moment, shows obvious change, and the respective maximum is increased by 12.9%, 75.6%, 73.4%, 27.7%, 99.9% and 98.5%, compared with their minimum. The peak frequencies of the power spectrum of the rotor torque and thrust are related to the integral multiples of the blade passing frequency.
引文
[1]刘鸿波,何明洋,王斌,等.低空急流的研究进展与展望[J].气象学报,2014,72(2):191-206.Liu Hongbo,He Mingyang,Wang Bin,et al.Advances in low-level jet research and future prospects[J].Acta Meteorologica Sinica,2014,72(2):191-206(in Chinese).
    [2]Emeis S.Wind speed and shear associated with low-level jets over Northern Germany[J].Meteorologische Zeitschrift,2014,23(3):295-304.
    [3]Shu Z R,Li Q S,He Y C,et al.Investigation of low-level jet characteristics based on wind profiler observations[J].Journal of Wind Engineering and Industrial Aerodynamics,2018,174:369-381.
    [4]周文平,唐胜利,吕红.风剪切和动态来流对水平轴风力机尾迹和气动性能的影响[J].中国电机工程学报,2012,32(14):122-127.Zhou Wenping,Tang Shengli,LüHong.Effect of transient wind shear and dynamic inflow on the wake structure and performance of horizontal axis wind turbine[J].Proceedings of the CSEE,2012,32(14):122-127(in Chinese).
    [5]祝贺,徐建源,滕云,等.风力机风轮气动性能三维流场数值模拟[J].中国电机工程学报,2010,30(17):85-90.Zhu He,Xu Jianyuan,Teng Yun,et al.3D flow field numerical aerodynamic performance test of wind turbine rotor[J].Proceedings of the CSEE,2010,30(17):85-90(in Chinese).
    [6]Gutierrez W,Araya G,Kiliyanpilakkil P,et al.Structural impact assessment of low level jets over wind turbines[J].Journal of Renewable and Sustainable Energy,2016,8(2):023308.
    [7]Kelley N,Shirazi M,Jager D,et al.Lamar low-level jet project interim report[R].Golden,Colorado,US:National Renewable Energy Laboratory,2004.
    [8]Wilczak J,Finley C,Freedman J,et al.The Wind forecast improvement project(WFIP):a public-private partnership addressing wind energy forecast needs[J].Bulletin of the American Meteorological Society,2015,96(10):1699-1718.
    [9]Banta R M,Pichugina Y L,Brewer W A.Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet[J].Journal of the Atmospheric Sciences,2006,63(11):2700-2719.
    [10]Debnath M C.Influence of atmospheric boundary layer on turbulence in wind turbine wake[D].San Antonio:Texas Tech University,2014.
    [11]Jonkman B J,Buhl M L Jr.TurbSim user's guide v2.00.00[R].Golden,Colorado,US:National Renewable Energy Laboratory,2006.
    [12]Jonkman J,Butterfield S,Musial W,et al.Definition of a 5-MW reference wind turbine for offshore system development[R].Golden,Colorado,US:National Renewable Energy Laboratory,2009.
    [13]So?rensen J N,Shen W Z.Numerical modeling of wind turbine wakes[J].Journal of Fluids Engineering,2002,124(2):393-399.
    [14]Jonkman B J,Buhl M L Jr.FAST User’s Guide[R].Golden,Colorado,US:National Renewable Energy Laboratory,2005.
    [15]Leishman J G,Beddoes T S.A semi‐empirical model for dynamic stall[J].Journal of the American Helicopter Society,1989,34(3):3-17.
    [16]Banta R M.Stable-boundary-layer regimes from the perspective of the low-level jet[J].Acta Geophysica,2008,56(1):58-87.
    [17]Storm B,Dudhia J,Basu S,et al.Evaluation of the weather research and forecasting model on forecasting low‐level jets:implications for wind energy[J].Wind Energy,2009,12(1):81-90.
    [18]肖业伦,金长江.大气扰动中的飞行原理[M].北京:国防工业出版社,1993.Xiao Y L,Jin C J.Flight principle in atmospheric turbulence[M].Beijing:National Defense Industry Press,1993.
    [19]陈健伟,王良明,李子杰.两种典型低空风切变对火箭弹弹道特性的影响[J].北京航空航天大学学报,2018,44(5):1008-1017.Chen J W,Wang L M,Li Z J.Influence of two typical kinds of low-level wind shear on ballistic performance of rockets[J].Journal of Beijing University of Aeronautics and Astronautics,2018,44(5):1008-1017(in Chinese).
    [20]Churchfield M J,Lee S,Michalakes J,et al.A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics[J].Journal of Turbulence,2012,13:N14.