普陀山苔草对铅锌的富集特性及生理响应研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Lead and Zinc Accumulation Characteristics and Physiological Responses of Carex putuoshanensis sp.
  • 作者:马建玲 ; 黄金龙 ; 朱雪梅 ; 邵继荣 ; 文雯 ; 李志强 ; 何芳
  • 英文作者:MA Jian-ling;HUANG Jin-long;ZHU Xue-mei;SHAO Ji-rong;WEN Wen;LI Zhi-qiang;HE Fang;College of Environment Science,Sichuan Agricultural University;Jiezi Town People's Government of Chongzhou;College of Biology Science,Sichuan Agricultural University;
  • 关键词:普陀山苔草 ; 铅锌 ; 富集特性 ; 生理响应
  • 英文关键词:Carex putuoshanensis sp.;;lead and zinc;;accumulation characteristics;;physiological response
  • 中文刊名:SCND
  • 英文刊名:Journal of Sichuan Agricultural University
  • 机构:四川农业大学环境学院;崇州市街子镇人民政府;四川农业大学生命科学学院;
  • 出版日期:2018-08-28
  • 出版单位:四川农业大学学报
  • 年:2018
  • 期:v.36;No.139
  • 基金:四川省科技支撑计划项目(2008FZ0180)
  • 语种:中文;
  • 页:SCND201804007
  • 页数:9
  • CN:04
  • ISSN:51-1281/S
  • 分类号:46-54
摘要
【目的】野外调查发现普陀山苔草可能是一种铅富集植物,为了进一步确定普陀山苔草的铅锌富集特性。【方法】利用控制性盆栽试验研究铅锌单一及交互因素对普陀山苔草的生长、生理代谢及铅锌积累的影响。【结果】普陀山苔草对铅具有较强的富集能力,同时锌元素对普陀山苔草吸收铅具有协同作用。试验表明在铅浓度为600 mg/L、锌浓度为125 mg/L和250 mg/L时,其地上部分铅含量分别为3 299.92、3 212.76 mg/kg,铅转运系数和富集系数均大于1,其吸收铅的能力达到超富集。在铅浓度≤600 mg/L、锌浓度≤125 mg/L的单一及交互处理下,普陀山苔草的株高、根长、生物量较对照(P0Z0)显著增加(P<0.05)。当锌浓度为125 mg/L时,可减缓普陀山苔草叶片质膜透性和丙二醛增加的趋势。此外,在铅浓度为600 mg/L、锌浓度为125 mg/L时,普陀山苔草生物量和根系活力增至最大,而叶片质膜透性减至处理中最小。【结论】普陀山苔草是一种特定条件下的铅超富集植物,且在铅浓度为600 mg/L、锌浓度为125 mg/L时,最适宜于普陀山苔草的生长、代谢及铅的富集。因此,可将其用于铅污染土壤和铅锌矿山的修复和治理。
        【Objective】The objective of study was to clarify the lead and zinc enrichment characteristics of Carex putuoshanensis sp. which maybe a lead accumulating plant. 【Method】Using a pot experiment to investigate the growth,physiological metabolism,and accumulation of Carex putuoshanensis sp. with lead and zinc exposure.【Result】Carex pu tuoshanensis sp. could significantly absorb and accumulate lead(P<0.05),and zinc had a synergistic effect with lead. When the treatment concentrations were lead600 mg/L,zinc 125 mg/L and lead 600 mg/L,zinc 250 mg/L,the lead concentrations in shoots of Carex putuoshanensis sp. was 3 299.92 mg/kg,3 212.76 mg/kg,respectively,both bio-concentration and translocation factors were greater than 1,exceeded the critical of lead hyperaccumulator. When the lead treatment concentrations was less than 600 mg/L,the zinc treatment concentrations was less 125 mg/L the plant height,root length,biomasses of Carex putuoshanensis sp. incr eased significantly(P <0.05).The increase of relative electric conductivities and malondialdehyde were retarded by adding zinc with the concentration was 125 mg/L. Besides,when lead concentration was 600 mg/L and zinc concentration was 125 mg/L,the biomasses and root activity reached the maximum,the relative electric conductivities was the minimum. 【Conclusion】Carex putuoshanensis sp. was a lead hyperaccumulator under certain conditions,when lead concentration was 600 mg/L and zinc concentration was 125 mg/L,it was the most suitable for the growth,physiological metabolism and lead accumulation of Carex putuoshanensis sp.,which could be utilized for lead contaminated soil and lead-zinc mines phytoremediation.
引文
[1]LI Y,ZHOU C F,HUANG M Y,et al.Lead tolerance mechanism in Conyza canadensis:subcellular distribution,ultrastructure,antioxidative defense system,and phytochelatins[J].Journal of Plant Research,2016,129(2):251-262.
    [2]QIAO X Q,ZHENG Z Z,ZHANG L F,et al.Lead tolerance mechanism in sterilized seedlings of Potamogeton crispus L.:subcellular distribution,polyamines and proline[J].Chemosphere,2015(120):179-187.
    [3]GUPTA D K,HUANG H G,CORPAS F J.Lead tolerance in plants:strategies for phytoremediation[J].Environmental Science and Pollution Research,2013,20(4):2150-2161.
    [4]ATABAYEYA S.Heavy metals accumulation ability of wild grass species from industrial areas of Kazakhstan[M].Phytoremediation:Springer International Publishing,2016:157-208.
    [5]BAYAT B,SARI B.Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge[J].Journal of Hazardous Materials,2010,174(1):763-769.
    [6]DERMONT G,BERGERON M,MERCIER G,et al.Soil wash ing for metal removal:a review of physical/chemical technologies and field applications[J].Journal of Hazardous Materials,2008,152(1):1-31.
    [7]YAMATO M,YOSHIDA S,IWASE K.Cadmium accumulation in Crassocephalum crepidioide(sBenth).S.Moore(Compositae)in heavy-metal polluted soils and Cd-added conditions in hydroponic and pot cultures[J].Soil Science and Plant Nutrition,2008,54(5):738-743.
    [8]SUN Y,ZHOU Q,DIAO C.Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L[.J].Bioresource Technology,2008,99(5):1103-1110.
    [9]ASSUNCAO A G L,SCHAT H,AARTS M G M.Thlaspi caerulescens,an attractive model species to study heavy metal hyperaccumulation in plants[J].New Phytologist,2003,159(2):351-360.
    [10]MARCHIOL L,SACCO P,ASSOLARI S,et al.Reclamation of polluted soil:phytoremediation potential of crop-related Brassica,Species[J].Water,Air,and Soil Pollution,2004,158(1):345-356.
    [11]陈一萍.重金属超积累植物的研究进展[J].环境科学与管理,2008,33(3):20-24.
    [12]杨远祥,朱雪梅,邵继荣,等.一种利用莎草科苔草属植物修复铅锌矿山的方法,CN103551370A[P].2014.
    [13]张治安,张美善,蔚荣海.植物生理学实验指导[M].北京:中国农业科学技术出版,2004:36-37.
    [14]熊庆娥.植物生理学实验教程[M].成都:四川科学技术出版社,2003:55-56.
    [15]李合生,孙群,赵世杰.植物生理生化实验原理和技术[M].北京:高等教育出版社,2004:35-40.
    [16]李玲.植物生理学模块实验指导[M].北京:科学出版社,2009:78-80.
    [17]闵运江,周守标,罗其领,等.四种重金属胁迫下朝天委陵菜的生长特性及富集能力[J].激光生物学报,2008,17(5):673-678.
    [18]叶林春,张青松,蒋小军,等.矿区植物假繁缕对铅、锌积累特性的研究[J].中国环境科学,2010,30(2):239-245.
    [19]夏汉平,束文圣.香根草和百喜草对铅锌尾矿重金属的抗性与吸收差异研究[J].生态学报,2001,21(7):1121-1129.
    [20]HALL J L.Cellular mechanisms for heavy metal detoxification and tolerance[J].Journal of Experimental Botany,2002,53(366):1-11.
    [21]BUENDIA-GONZALEZ I L,OROZCO-VILLAFUERTE J,CRUZ-SOSA F,et al.Prosopis laevigata a potential chromium(VI)and cadmium(II)hyperaccumulator desert plant[J].Bioresource Technology,2010,101(15):5862-5867.
    [22]YANG X E,LONG X X,YE H B,et al.Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species(Sedum alfredii Hance)[J].Plant and Soil,2004,259(1):181-189.
    [23]BORISEV M,PAJEVIC S,NIKOLIC N,et al.Phytoextraction of Cd,Ni,and Pb using four willow clones(Salix spp.)[J].Polish Journal of Environmental Studies,2009,18(4):553-561.
    [24]LIU D,LI S,ISLAM E,et al.Lead accumulation and toleranceof Moso bamboo(Phyllostachys pubescens)seedlings:applications of phytoremediation[J].Journal of Zhejiang University Science B,2015,16(2):123-130.
    [25]仲崇府.垫状卷柏(Selaginella pulvinata Maxim)对铅锌的富集特性研究[D].成都:四川农业大学,2013:18-19.
    [26]刘英杰,朱雪梅,林立金,等.冬季农田杂草荠菜对铅的生理响应及积累特性研究[J].农业环境科学学报,2016,35(1):29-36.
    [27]BAKER A J M,BROOKS R,BAKER N A.Terrestrial higher plants which hyperaccumulate metallic elements.A review of their distribution,ecology and phytochemistry[J].Biorecovery,1989,2(1):138-144.
    [28]聂俊华,刘秀梅,王庆仁.Pb(铅)富集植物品种的筛选[J].农业工程学报,2004,20(4):255-258.
    [29]ROSSATO L V,NICOLOSO F T,FARIAS J G,et al.Effects of lead on the growth,lead accumulation and physiological responses of Pluchea sagittalis[J].Ecotoxicology,2012,21(1):111-123.
    [30]HAN Y L,HUANG S Z,GU J G,et al.Tolerance and accumulation of lead by species of Iris L[.J].Ecotoxicology,2008,17(8):853-859.
    [31]原海燕,郭智,黄苏珍.Pb污染对马蔺生长、体内重金属元素积累以及叶绿体超微结构的影响[J].生态学报,2011,31(12):3350-3357.
    [32]刘柿良,杨容孑,马明东,等.土壤镉胁迫对龙葵(Solanum nigrum L.)幼苗生长及生理特性的影响[J].农业环境科学学报,2015(2):240-247.
    [33]KIRBAGZENGIN F,MUNZUROGLU O.Toxic effects of cadmium on metabolism of sunflower(Helianthus annuus L).seedlings[J].Acta Agriculturae Scandinavica,2006,56(3):224-229.
    [34]CHAPARZADEH N,DAMICO M L,KHAYARI-NEJAD R A,et al.Antioxidative responses of Calendula officinalis under salinity conditions[J].Plant Physiology and Biochemistry,2004,42(9):695-701.
    [35]田治国,王飞.不同品种万寿菊对镉胁迫的生长和生理响应[J].西北植物学报,2013,33(10):2057-2064.